树莓派4B+ROS+RealSense T265室内定位替代光流开源方案

2023-10-07 23:10

本文主要是介绍树莓派4B+ROS+RealSense T265室内定位替代光流开源方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

硬件机载端:树莓派4B 4/8G 、T265、RPLIDAR-A2

配套开发环境:

树莓派系统Ubuntu 20.04.3 LTS

RealSense SDK 2.0

ROS系统版本:noetic+realsense-ros

多平台远程登陆软件:nomachine(win10、mac、安卓、ubuntu等)

有两种方案实现t265位姿数据,本方案通过修改宏定义T265_STATE_CAPTURE_ENABLE实现

1、可直接利用SDK函数中的rs-pose获取位姿数据,参考链接如下:

rs-pose (intelrealsense.com)

2、利用官方提供的realsense-ros包中自带的demo启动roslaunch realsense2_camera rs_t265.launch,通过订阅节点发布的"/camera/odom/sample"话题获取位姿数据

传输浮点数据需有用到的数据转换函数(大小端通用)

#include <iostream>

#include "datatf.h"

using namespace std;

union

{

unsigned char floatByte[4];

float floatValue;

}FloatUnion;

/***************************************************************************************

@函数名:void Float2Byte(float *FloatValue, unsigned char *Byte, unsigned char Subscript)

@入口参数:FloatValue:float值

     Byte:数组

       Subscript:指定从数组第几个元素开始写入

@出口参数:无

功能描述:将float数据转成4字节数据并存入指定地址

@作者:无名小哥

@日期:2020年01月17日

****************************************************************************************/

void Float2Byte(float *FloatValue, unsigned char *Byte, unsigned char Subscript)

{

FloatUnion.floatValue = (float)2;

if(FloatUnion.floatByte[0] == 0)//小端模式

{

FloatUnion.floatValue = *FloatValue;

Byte[Subscript]     = FloatUnion.floatByte[0];

Byte[Subscript + 1] = FloatUnion.floatByte[1];

Byte[Subscript + 2] = FloatUnion.floatByte[2];

Byte[Subscript + 3] = FloatUnion.floatByte[3];

}

else//大端模式

{

FloatUnion.floatValue = *FloatValue;

Byte[Subscript]     = FloatUnion.floatByte[3];

Byte[Subscript + 1] = FloatUnion.floatByte[2];

Byte[Subscript + 2] = FloatUnion.floatByte[1];

Byte[Subscript + 3] = FloatUnion.floatByte[0];

}

}

/***************************************************************************************

@函数名:void Byte2Float(unsigned char *Byte, unsigned char Subscript, float *FloatValue)

@入口参数:Byte:数组

     Subscript:指定从数组第几个元素开始写入

       FloatValue:float值

@出口参数:无

功能描述:从指定地址将4字节数据转成float数据

@作者:无名小哥

@日期:2020年01月17日

****************************************************************************************/

void Byte2Float(unsigned char *Byte, unsigned char Subscript, float *FloatValue)

{

FloatUnion.floatByte[0]=Byte[Subscript];

FloatUnion.floatByte[1]=Byte[Subscript + 1];

FloatUnion.floatByte[2]=Byte[Subscript + 2];

FloatUnion.floatByte[3]=Byte[Subscript + 3];

*FloatValue=FloatUnion.floatValue;

}

传输浮点数据需有用到的数据转换函数(大小端通用)

#include <iostream>

#include "datatf.h"

using namespace std;

union

{

unsigned char floatByte[4];

float floatValue;

}FloatUnion;

/***************************************************************************************

@函数名:void Float2Byte(float *FloatValue, unsigned char *Byte, unsigned char Subscript)

@入口参数:FloatValue:float值

     Byte:数组

       Subscript:指定从数组第几个元素开始写入

@出口参数:无

功能描述:将float数据转成4字节数据并存入指定地址

@作者:无名小哥

@日期:2020年01月17日

****************************************************************************************/

void Float2Byte(float *FloatValue, unsigned char *Byte, unsigned char Subscript)

{

FloatUnion.floatValue = (float)2;

if(FloatUnion.floatByte[0] == 0)//小端模式

{

FloatUnion.floatValue = *FloatValue;

Byte[Subscript]     = FloatUnion.floatByte[0];

Byte[Subscript + 1] = FloatUnion.floatByte[1];

Byte[Subscript + 2] = FloatUnion.floatByte[2];

Byte[Subscript + 3] = FloatUnion.floatByte[3];

}

else//大端模式

{

FloatUnion.floatValue = *FloatValue;

Byte[Subscript]     = FloatUnion.floatByte[3];

Byte[Subscript + 1] = FloatUnion.floatByte[2];

Byte[Subscript + 2] = FloatUnion.floatByte[1];

Byte[Subscript + 3] = FloatUnion.floatByte[0];

}

}

/***************************************************************************************

@函数名:void Byte2Float(unsigned char *Byte, unsigned char Subscript, float *FloatValue)

@入口参数:Byte:数组

     Subscript:指定从数组第几个元素开始写入

       FloatValue:float值

@出口参数:无

功能描述:从指定地址将4字节数据转成float数据

@作者:无名小哥

@日期:2020年01月17日

****************************************************************************************/

void Byte2Float(unsigned char *Byte, unsigned char Subscript, float *FloatValue)

{

FloatUnion.floatByte[0]=Byte[Subscript];

FloatUnion.floatByte[1]=Byte[Subscript + 1];

FloatUnion.floatByte[2]=Byte[Subscript + 2];

FloatUnion.floatByte[3]=Byte[Subscript + 3];

*FloatValue=FloatUnion.floatValue;

}

机载端代码如下:

#include <ros/ros.h>

#include <serial/serial.h>

#include <std_msgs/String.h>

#include <std_msgs/Bool.h>

#include <std_msgs/Empty.h>

#include <geometry_msgs/Pose.h>

#include <geometry_msgs/PoseStamped.h>

#include <geometry_msgs/Vector3.h>

#include <nav_msgs/Odometry.h>

#include <tf2/LinearMath/Quaternion.h>

#include <librealsense2/rs.hpp>

#include "datatf.h"

#define T265_STATE_CAPTURE_ENABLE   1

static uint8_t NCLink_Head[2]={0xFC,0xFF};//数据帧头

static uint8_t NCLink_End[2] ={0xA1,0xA2};//数据帧尾

uint8_t nclink_databuf[100];//待发送数据缓冲区

serial::Serial com;

geometry_msgs::Pose current_position;

geometry_msgs::Pose target_position;

geometry_msgs::Vector3 currrent_velocity;

std_msgs::Bool current_position_update_flag;

std_msgs::Bool target_position_update_flag;

void NCLink_Send_Currrent_State(float userdata1  ,float userdata2,

        float userdata3  ,float userdata4,

        float userdata5  ,float userdata6,

                                float userdata7  ,float userdata8,

                                float userdata9  ,float userdata10,

                                float quality    ,

                                uint8_t byte0,

                                uint8_t byte1,

                                uint8_t byte2,

                                uint8_t byte3,

                                uint8_t byte4,

                                uint8_t byte5,

                                uint8_t byte6,

                                uint8_t byte7,

                                uint8_t update_flag,uint8_t msg_id)

{

    uint8_t sum=0,_cnt=0,i=0;

    nclink_databuf[_cnt++]=NCLink_Head[0];

    nclink_databuf[_cnt++]=NCLink_Head[1];

    nclink_databuf[_cnt++]=msg_id;

    nclink_databuf[_cnt++]=0;

        

    Float2Byte(&userdata1,nclink_databuf,_cnt);//position.x

    _cnt+=4;

    Float2Byte(&userdata2,nclink_databuf,_cnt);//position.y

    _cnt+=4;

    Float2Byte(&userdata3,nclink_databuf,_cnt);//position.z

    _cnt+=4;

    Float2Byte(&userdata4,nclink_databuf,_cnt);//velocity.x

    _cnt+=4;

    Float2Byte(&userdata5,nclink_databuf,_cnt);//velocity.y

    _cnt+=4;

    Float2Byte(&userdata6,nclink_databuf,_cnt);//velocity.z

    _cnt+=4;

    Float2Byte(&userdata7,nclink_databuf,_cnt);//quaternion.x

    _cnt+=4;

    Float2Byte(&userdata8,nclink_databuf,_cnt);//quaternion.y

    _cnt+=4;

    Float2Byte(&userdata9,nclink_databuf,_cnt);//quaternion.z

    _cnt+=4;//28

    Float2Byte(&userdata10,nclink_databuf,_cnt);//quaternion.w

    _cnt+=4;//32

    Float2Byte(&quality,nclink_databuf,_cnt);//quality

    _cnt+=4;//32

    nclink_databuf[_cnt++]=byte0;

    nclink_databuf[_cnt++]=byte1;

    nclink_databuf[_cnt++]=byte2;

    nclink_databuf[_cnt++]=byte3;

    nclink_databuf[_cnt++]=byte4;

    nclink_databuf[_cnt++]=byte5;

    nclink_databuf[_cnt++]=byte6;

    nclink_databuf[_cnt++]=byte7;

    nclink_databuf[_cnt++]=update_flag;

    nclink_databuf[3] = _cnt-4;

    for(i=0;i<_cnt;i++) sum ^= nclink_databuf[i]; 

    nclink_databuf[_cnt++]=sum;

    nclink_databuf[_cnt++]=NCLink_End[0];

    nclink_databuf[_cnt++]=NCLink_End[1];

    com.write(nclink_databuf,_cnt);

    //ROS_INFO("%d",_cnt);

}

void serial_write_callback(const std_msgs::String::ConstPtr& msg)

{

    ROS_INFO_STREAM("writing to serial port"<<msg->data);

    com.write(msg->data);

}

#ifdef T265_STATE_CAPTURE_ENABLE 

void t265_callback_internal(const geometry_msgs::PoseStamped::ConstPtr& msg)

{

    ROS_INFO_STREAM("t265_callback_internal");

    NCLink_Send_Currrent_State(msg->pose.position.x,

                               msg->pose.position.y,

                               msg->pose.position.z,

                               currrent_velocity.x,

                               currrent_velocity.y,

                               currrent_velocity.z,

                               msg->pose.orientation.x,

                               msg->pose.orientation.y,

                               msg->pose.orientation.z,

                               msg->pose.orientation.w,

                               100.0f,0x01,

                               0,1,2,3,4,5,6,7,

                               0x0D);

}

#endif

void t265_callback_external(const nav_msgs::Odometry::ConstPtr& msg)

{

    ROS_INFO_STREAM("t265_callback_external"); 

    NCLink_Send_Currrent_State(msg->pose.pose.position.y,

                               msg->pose.pose.position.x,

                               msg->pose.pose.position.z,

                               msg->twist.twist.linear.y,

                               msg->twist.twist.linear.x,

                               msg->twist.twist.linear.z,

                               -msg->pose.pose.orientation.y,

                               msg->pose.pose.orientation.z,

                               -msg->pose.pose.orientation.x,

                               msg->pose.pose.orientation.w,

                               100.0f,0x01,

                               0,1,2,3,4,5,6,7,

                               0x0D);

}

int main(int argc,char** argv)

{

    ros::init(argc,argv,"serialport");

    ros::NodeHandle n;

    ros::Subscriber serial_write_sub=n.subscribe("serial_write",1000,serial_write_callback);

    ros::Publisher serial_read_pub=n.advertise<std_msgs::String>("serial_write",1000);

    ros::Subscriber t265_sub_external=n.subscribe("/camera/odom/sample",1000,t265_callback_external);

#ifdef T265_STATE_CAPTURE_ENABLE   

    ros::Subscriber t265_sub_innernal=n.subscribe("/t265/odom/sample",1000,t265_callback_internal);

    ros::Publisher t265_pub=n.advertise<geometry_msgs::PoseStamped>("/t265/odom/sample",1000); 

    rs2::pipeline pipe;

    rs2::config cfg;

    cfg.enable_stream(RS2_STREAM_POSE,RS2_FORMAT_6DOF);

    pipe.start(cfg);

#endif

    try

    {

        com.setPort("/dev/serial0");//("/dev/ttyUSB0");("/dev/ttyAMA0");

        com.setBaudrate(921600);

        serial::Timeout to=serial::Timeout::simpleTimeout(1000);

        com.setTimeout(to);

        com.open();

    }

    catch (serial::IOException& e)

    {

        ROS_ERROR_STREAM("unable to open port");

        return -1;

    }

    if(com.isOpen())

    {

        ROS_INFO_STREAM("serial port is initialized");

    }

    else return -1;

    ros::Rate loop_rate(100);

    while(ros::ok())

    {

        if(com.available())

        {

            ROS_INFO_STREAM("read from serial port\n");

            std_msgs::String result;

            result.data=com.read(com.available());

            ROS_INFO_STREAM("read: "<<result.data);

            serial_read_pub.publish(result);

        }

        ros::spinOnce();

        loop_rate.sleep();

#ifdef T265_STATE_CAPTURE_ENABLE  

        auto frames=pipe.wait_for_frames();

        auto f=frames.first_or_default(RS2_STREAM_POSE);

        auto pose_data=f.as<rs2::pose_frame>().get_pose_data();

        //rs2_pose pose_data;

        geometry_msgs::PoseStamped pmsg;

        pmsg.pose.position.x=current_position.position.x=-pose_data.translation.x;

        pmsg.pose.position.y=current_position.position.y=-pose_data.translation.z;

        pmsg.pose.position.z=current_position.position.z=pose_data.translation.y;

        currrent_velocity.x=-pose_data.velocity.x;

        currrent_velocity.y=-pose_data.velocity.z;

        currrent_velocity.z=pose_data.velocity.y;

        pmsg.pose.orientation.x=pose_data.rotation.x;

        pmsg.pose.orientation.y=pose_data.rotation.y;

        pmsg.pose.orientation.z=pose_data.rotation.z;

        pmsg.pose.orientation.w=pose_data.rotation.w;

        t265_pub.publish(pmsg);

        ROS_INFO("translation:%f %f %f",

        pose_data.translation.x,

        pose_data.translation.y,

        pose_data.translation.z);

        ROS_INFO("velocity:%f %f %f",

        pose_data.velocity.x,

        pose_data.velocity.y,

        pose_data.velocity.z);

        ROS_INFO("quad:%f %f %f %f",

        pose_data.rotation.x,

        pose_data.rotation.y,

        pose_data.rotation.z,

        pose_data.rotation.w);

#endif        

    }

}

飞控端解析代码如下:

void NCLink_Data_Prase_Process_Lite(uint8_t *data_buf,uint8_t num)//飞控数据解析进程

{

  uint8_t sum = 0;

  for(uint8_t i=0;i<(num-3);i++)  sum ^= *(data_buf+i);

  if(!(sum==*(data_buf+num-3)))    return;//判断sum

if(!(*(data_buf)==NCLink_Head[1]&&*(data_buf+1)==NCLink_Head[0]))         return;//判断帧头

if(!(*(data_buf+num-2)==NCLink_End[0]&&*(data_buf+num-1)==NCLink_End[1])) return;//帧尾校验  

if(*(data_buf+2)==0X0A)                             //地面站控制移动数据

  {

    ngs_sdk.move_mode=*(data_buf+4),

ngs_sdk.mode_order=*(data_buf+5);

    ngs_sdk.move_distance=(uint16_t)(*(data_buf+6)<<8)|*(data_buf+7);;

    ngs_sdk.update_flag=true;

ngs_sdk.move_flag.sdk_front_flag=false;

ngs_sdk.move_flag.sdk_behind_flag=false;

ngs_sdk.move_flag.sdk_left_flag=false;

ngs_sdk.move_flag.sdk_right_flag=false;

ngs_sdk.move_flag.sdk_up_flag=false;

ngs_sdk.move_flag.sdk_down_flag=false;

if(*(data_buf+4)==SDK_FRONT)

{

ngs_sdk.move_flag.sdk_front_flag=true;

ngs_sdk.f_distance=ngs_sdk.move_distance;

}

else if(*(data_buf+4)==SDK_BEHIND) 

{

ngs_sdk.move_flag.sdk_behind_flag=true;

ngs_sdk.f_distance=-ngs_sdk.move_distance;

}

else if(*(data_buf+4)==SDK_LEFT)  

{

ngs_sdk.move_flag.sdk_left_flag=true;

ngs_sdk.f_distance=-ngs_sdk.move_distance;

}

else if(*(data_buf+4)==SDK_RIGHT)

{

ngs_sdk.move_flag.sdk_right_flag=true;

ngs_sdk.f_distance=ngs_sdk.move_distance;

}

else if(*(data_buf+4)==SDK_UP)

ngs_sdk.move_flag.sdk_up_flag=true;

ngs_sdk.f_distance=ngs_sdk.move_distance;

}

else if(*(data_buf+4)==SDK_DOWN) 

{

ngs_sdk.move_flag.sdk_down_flag=true;

ngs_sdk.f_distance=-ngs_sdk.move_distance;

}

NCLink_Send_Check_Flag[8]=1;

Pilot_Status_Tick();

  }

else if(*(data_buf+2)==0X0C)

  {

Guide_Flight_Lng =((int32_t)(*(data_buf+4)<<24)|(*(data_buf+5)<<16)|(*(data_buf+6)<<8)|*(data_buf+7));

Guide_Flight_Lat =((int32_t)(*(data_buf+8)<<24)|(*(data_buf+9)<<16)|(*(data_buf+10)<<8)|*(data_buf+11));

Guide_Flight_Cnt++;;

Guide_Flight_Flag=1;

Pilot_Status_Tick();

}

else if(*(data_buf+2)==0X0D)

{

Byte2Float(data_buf,4,&current_state.position_x);

Byte2Float(data_buf,8,&current_state.position_y);

Byte2Float(data_buf,12,&current_state.position_z);

Byte2Float(data_buf,16,&current_state.velocity_x);

Byte2Float(data_buf,20,&current_state.velocity_y);

Byte2Float(data_buf,24,&current_state.velocity_z);

current_state.position_x*=100.0f;

current_state.position_y*=100.0f;

current_state.position_z*=100.0f;

current_state.velocity_x*=100.0f;

current_state.velocity_y*=100.0f;

current_state.velocity_z*=100.0f;

Byte2Float(data_buf,28,&current_state.q[0]);

Byte2Float(data_buf,32,&current_state.q[1]);

Byte2Float(data_buf,36,&current_state.q[2]);

Byte2Float(data_buf,40,&current_state.q[3]);

float _q[4];

_q[0]=current_state.q[3]*(1.0f);

_q[1]=current_state.q[0]*(1.0f);

_q[2]=current_state.q[2]*(-1.0f);

_q[3]=current_state.q[1]*(1.0f);

current_state.q[0]=_q[0];

current_state.q[1]=_q[1];

current_state.q[2]=_q[2];

current_state.q[3]=_q[3];

quad_getangle(current_state.q,current_state.rpy);

if(current_state.rpy[2]<0.0f)   current_state.rpy[2]+=360.0f;

if(current_state.rpy[2]>360.0f) current_state.rpy[2]-=360.0f;

Byte2Float(data_buf,44,&current_state.quality);

current_state.update_flag=*(data_buf+48);

current_state.byte[0]=*(data_buf+49);

current_state.byte[1]=*(data_buf+50);

current_state.byte[2]=*(data_buf+51);

current_state.byte[3]=*(data_buf+52);

current_state.byte[4]=*(data_buf+53);

current_state.byte[5]=*(data_buf+54);

current_state.byte[6]=*(data_buf+55);

current_state.byte[7]=*(data_buf+56);

Pilot_Status_Tick();

  Get_Systime(&nclink_t);

}

}

飞控IMU与VIO融合代码如下:

uint16_t VIO_Sync_Cnt=5;

float K_ACC_VIO=1.0f,K_VEL_VIO=5.0f,K_POS_VIO=1.0f;

void  VIO_SLAM_INS_CF(void)

{

  Vector2f speed_delta={0};

float obs_err[2];

  if(current_state.update_flag==1)//存在数据光流更新时,20ms一次

  { 

opt_data.valid=1;

current_state.update_flag=0; 

OpticalFlow_Position.x=current_state.position_x;

OpticalFlow_Position.y=current_state.position_y;

OpticalFlow_Speed.x   =current_state.velocity_x;

OpticalFlow_Speed.y   =current_state.velocity_y;

OpticalFlow_Speed_Err.x=OpticalFlow_Speed.x-VIO_SINS.Speed[_EAST];

OpticalFlow_Speed_Err.y=OpticalFlow_Speed.y-VIO_SINS.Speed[_NORTH];

   

    OpticalFlow_Position_Err.x=OpticalFlow_Position.x-VIO_SINS.Pos_Backups[_EAST][VIO_Sync_Cnt];

    OpticalFlow_Position_Err.y=OpticalFlow_Position.y-VIO_SINS.Pos_Backups[_NORTH][VIO_Sync_Cnt];

OpticalFlow_Speed_Err.x=OpticalFlow_Speed.x-VIO_SINS.Vel_Backups[_EAST][VIO_Sync_Cnt];

    OpticalFlow_Speed_Err.y=OpticalFlow_Speed.y-VIO_SINS.Vel_Backups[_NORTH][VIO_Sync_Cnt];

OpticalFlow_Speed_Err.x=constrain_float(OpticalFlow_Speed_Err.x,-250,250);

OpticalFlow_Speed_Err.y=constrain_float(OpticalFlow_Speed_Err.y,-250,250);

  }

obs_err[0]=OpticalFlow_Speed_Err.x;

obs_err[1]=OpticalFlow_Speed_Err.y;

//三路反馈量修正惯导

correct[0].acc +=obs_err[0]* K_ACC_VIO*0.005f;//加速度矫正量

correct[1].acc +=obs_err[1]* K_ACC_VIO*0.005f;//加速度矫正

correct[0].acc=constrain_float(correct[0].acc,-50,50);

correct[1].acc=constrain_float(correct[1].acc,-50,50);

correct[0].vel  =obs_err[0]* K_VEL_VIO*0.005f;//速度矫正量

correct[1].vel  =obs_err[1]* K_VEL_VIO*0.005f;//速度矫正量

correct[0].pos  =obs_err[0]* K_POS_VIO*0.005f;//位置矫正量

correct[1].pos  =obs_err[1]* K_POS_VIO*0.005f;//位置矫正量

acc.x=-Origion_NamelessQuad._Acceleration[_EAST];//惯导加速度沿载体横滚,机头左侧为正

acc.y= Origion_NamelessQuad._Acceleration[_NORTH];//惯导加速度沿载体机头,机头前向为正

  VIO_SINS.Acceleration[_EAST] = acc.x+correct[0].acc;//惯导加速度沿载体横滚,机头左侧为正

  VIO_SINS.Acceleration[_NORTH]= acc.y+correct[1].acc;//惯导加速度沿载体机头,机头前向为正

  

speed_delta.x=(VIO_SINS.Acceleration[_EAST])*0.005f;

  speed_delta.y=(VIO_SINS.Acceleration[_NORTH])*0.005f; 

VIO_SINS.Position[_EAST]+=VIO_SINS.Speed[_EAST]*0.005f+0.5f*speed_delta.x*0.005f+pos.x+correct[0].pos;

VIO_SINS.Position[_NORTH] +=VIO_SINS.Speed[_NORTH] *0.005f+0.5f*speed_delta.y*0.005f+pos.y+correct[1].pos;

VIO_SINS.Speed[_EAST]+=speed_delta.x+correct[0].vel;

VIO_SINS.Speed[_NORTH] +=speed_delta.y+correct[1].vel;

for(uint16_t i=Num-1;i>0;i--)

{

VIO_SINS.Pos_Backups[_NORTH][i]=VIO_SINS.Pos_Backups[_NORTH][i-1];

VIO_SINS.Pos_Backups[_EAST][i]=VIO_SINS.Pos_Backups[_EAST][i-1];

VIO_SINS.Vel_Backups[_NORTH][i]=VIO_SINS.Vel_Backups[_NORTH][i-1];

VIO_SINS.Vel_Backups[_EAST][i]=VIO_SINS.Vel_Backups[_EAST][i-1];

}   

VIO_SINS.Pos_Backups[_NORTH][0]=VIO_SINS.Position[_NORTH];

  VIO_SINS.Pos_Backups[_EAST][0]=VIO_SINS.Position[_EAST]; 

  VIO_SINS.Vel_Backups[_NORTH][0]=VIO_SINS.Speed[_NORTH];

  VIO_SINS.Vel_Backups[_EAST][0]=VIO_SINS.Speed[_EAST];

from_vio_to_body_frame(VIO_SINS.Position[_EAST],VIO_SINS.Position[_NORTH],

  &OpticalFlow_SINS.Position[_EAST],&OpticalFlow_SINS.Position[_NORTH],

current_state.rpy[2]);

from_vio_to_body_frame(VIO_SINS.Speed[_EAST],VIO_SINS.Speed[_NORTH],

  &OpticalFlow_SINS.Speed[_EAST],&OpticalFlow_SINS.Speed[_NORTH],

current_state.rpy[2]);

}

 作者:无名创新 https://www.bilibili.com/read/cv14270245?spm_id_from=333.999.0.0 出处:bilibili

这篇关于树莓派4B+ROS+RealSense T265室内定位替代光流开源方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/161047

相关文章

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu

电脑找不到mfc90u.dll文件怎么办? 系统报错mfc90u.dll丢失修复的5种方案

《电脑找不到mfc90u.dll文件怎么办?系统报错mfc90u.dll丢失修复的5种方案》在我们日常使用电脑的过程中,可能会遇到一些软件或系统错误,其中之一就是mfc90u.dll丢失,那么,mf... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案

《电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案》最近有不少兄弟反映,电脑突然弹出“mfc100u.dll已加载,但找不到入口点”的错误提示,导致一些程序无法正... 在计算机使用过程中,我们经常会遇到一些错误提示,其中最常见的就是“找不到指定的模块”或“缺少某个DL

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比