罗德里格斯公式的推导过程

2023-10-07 19:40

本文主要是介绍罗德里格斯公式的推导过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在学高翔博士的《视觉SLAM十四讲》,看到第三章中的课后题中要求理解罗德里格斯公式的推导过程,所以在CSDN上搜了一篇文章,原文链接http://blog.csdn.net/q583956932/article/details/78933245

原文写的十分精湛,大家可以直接看原文就好了,

以下是我在看这篇文章时所需要巩固的知识点(现在是大三狗,早把大一的知识点忘了。。。)

点积(来自维基百科):

        是两个向量上的函數并返回一个标量的二元运算,它的结果是欧几里得空间的标准内积。兩個向量的点积寫作a·b数量积标量积。

代数定义:

两个向量 a → {\displaystyle {\vec {a}}} \vec{a} = [a1, a2,…, an]和 b → {\displaystyle {\vec {b}}} \vec{b} = [b1, b2,…, bn]的点积定义为:

a → ⋅ b → = ∑ i = 1 n a i b i = a 1 b 1 + a 2 b 2 + ⋯ + a n b n {\displaystyle {\vec {a}}\cdot {\vec {b}}=\sum _{i=1}^{n}a_{i}b_{i}=a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}} \vec{a}\cdot \vec{b} = \sum_{i=1}^n a_ib_i = a_1b_1 + a_2b_2 + \cdots + a_nb_n

这裡的Σ是求和符号,而n是向量空間的維數。

例如,两个三维向量[1, 3, -5]和[4, -2, -1]的点积是

  [ 1 , 3 , − 5 ] ⋅ [ 4 , − 2 , − 1 ] = ( 1 ) ( 4 ) + ( 3 ) ( − 2 ) + ( − 5 ) ( − 1 ) = 4 − 6 + 5 = 3 {\displaystyle {\begin{aligned}\ [1,3,-5]\cdot [4,-2,-1]&=(1)(4)+(3)(-2)+(-5)(-1)\\&=4-6+5\\&=3\end{aligned}}} {\displaystyle {\begin{aligned}\ [1,3,-5]\cdot [4,-2,-1]&=(1)(4)+(3)(-2)+(-5)(-1)\\&=4-6+5\\&=3\end{aligned}}}

点积还可以写为:

a → ⋅ b → = | a → b → T | {\displaystyle {\vec {a}}\cdot {\vec {b}}=|{\vec {a}}{\vec {b}}^{T}|} {\displaystyle {\vec {a}}\cdot {\vec {b}}=|{\vec {a}}{\vec {b}}^{T}|}

这裡, b → T {\displaystyle {\vec {b}}^{T}} {\displaystyle {\vec {b}}^{T}}是行向量 b → {\displaystyle {\vec {b}}} \vec{b}的转置,而 | a → b → T | {\displaystyle |{\vec {a}}{\vec {b}}^{T}|} {\displaystyle |{\vec {a}}{\vec {b}}^{T}|} a → b → T {\displaystyle {\vec {a}}{\vec {b}}^{T}} {\displaystyle {\vec {a}}{\vec {b}}^{T}}的行列式。使用上面的例子,一个1×3矩阵(行向量)乘以一个3×1矩阵(列向量)的行列式就是结果(通过矩阵乘法得到1×1矩阵,再利用行列式得出純量答案):

| [ 1 3 − 5 ] [ 4 − 2 − 1 ] T | = | 3 | = 3 {\displaystyle |{\begin{bmatrix}1&3&-5\end{bmatrix}}{\begin{bmatrix}4&-2&-1\end{bmatrix}}^{T}|=|3|=3} {\displaystyle |{\begin{bmatrix}1&3&-5\end{bmatrix}}{\begin{bmatrix}4&-2&-1\end{bmatrix}}^{T}|=|3|=3}

几何定义:

在欧几里得空间中,点积可以直观地定义为

a → ⋅ b → = | a → | | b → | cos ⁡ θ {\displaystyle {\vec {a}}\cdot {\vec {b}}=|{\vec {a}}|\,|{\vec {b}}|\cos \theta \;}  \vec{a} \cdot \vec{b} = |\vec{a}| \, |\vec{b}| \cos \theta \;

这里 | x → {\displaystyle {\vec {x}}} \vec{x}| 表示 x → {\displaystyle {\vec {x}}} \vec{x}的模(长度),θ表示两个向量之间的角度。注意:点积的形式定义和这个定义不同;在形式定义中, a → {\displaystyle {\vec {a}}} \vec{a} b → {\displaystyle {\vec {b}}} \vec{b}的夹角是通过上述等式定义的。这样,两个互相垂直的向量的点积总是零。若 a → {\displaystyle {\vec {a}}} \vec{a} b → {\displaystyle {\vec {b}}} \vec{b}都是单位向量(长度为1),它们的点积就是它们的夹角的余弦。那么,给定两个向量,它们之间的夹角可以通过下列公式得到:

cos ⁡ θ = a ⋅ b | a → | | b → | {\displaystyle \cos {\theta }={\frac {\mathbf {a\cdot b} }{|{\vec {a}}|\,|{\vec {b}}|}}}  \cos{\theta} = \frac{\mathbf{a \cdot b}}{|\vec{a}| \, |\vec{b}|}

这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这裡,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。

标量投影:
A·B = |A| |B| cos(θ).|A| cos(θ)是AB的投影。

欧氏空间中向量A在向量B上的标量投影是指

A B = | A | cos ⁡ θ {\displaystyle A_{B}=|\mathbf {A} |\cos \theta } A_B=|\mathbf A|\cos\theta

这里θ是AB的夹角。从点积的几何定义 A ⋅ B = | A | | B | cos ⁡ θ {\displaystyle \mathbf {A} \cdot \mathbf {B} =|\mathbf {A} ||\mathbf {B} |\cos \theta } \mathbf A\cdot\mathbf B=|\mathbf{A}||\mathbf{B}|\cos\theta不难得出,两个向量的点积: A ⋅ B {\displaystyle \mathbf {A} \cdot \mathbf {B} } \mathbf A\cdot\mathbf B可以理解为向量 A {\displaystyle \mathbf {A} } \mathbf A在向量 B {\displaystyle \mathbf {B} } \mathbf B上的投影再乘以B的长度。

A ⋅ B = A B | B | = B A | A | {\displaystyle \mathbf {A} \cdot \mathbf {B} =A_{B}|\mathbf {B} |=B_{A}|\mathbf {A} |} 外积(来自维基百科):
   

两个向量 a {\displaystyle \mathbf {a} } \mathbf {a} b {\displaystyle \mathbf {b} } \mathbf {b} 的叉积写作 a × b {\displaystyle \mathbf {a} \times \mathbf {b} } {\displaystyle \mathbf {a} \times \mathbf {b} }(有时也被写成 a ∧ b {\displaystyle \mathbf {a} \wedge \mathbf {b} } {\displaystyle \mathbf {a} \wedge \mathbf {b} },避免和字母 x 混淆)。叉积可定义为:

a × b = | a | | b | sin ⁡ θ n ^ {\displaystyle \mathbf {a} \times \mathbf {b} =\left|\mathbf {a} \right|\left|\mathbf {b} \right|\sin \theta \;{\hat {\mathbf {n} }}{\displaystyle \mathbf {a} \times \mathbf {b} =\left|\mathbf {a} \right|\left|\mathbf {b} \right|\sin \theta \;{\hat {\mathbf {n} }}}

在这里 θ {\displaystyle \theta } \theta 表示 a {\displaystyle \mathbf {a} } \mathbf {a} b {\displaystyle \mathbf {b} } \mathbf {b} 之间的角度( 0 ∘ ≤ θ ≤ 180 ∘ {\displaystyle 0^{\circ }\leq \theta \leq 180^{\circ }} {\displaystyle 0^{\circ }\leq \theta \leq 180^{\circ }}),它位于这两个向量所定义的平面上。而 n ^ {\displaystyle {\hat {\mathbf {n} }}} {\hat  {​{\mathbf  {n}}}} 是一个与 a {\displaystyle \mathbf {a} } \mathbf {a} b {\displaystyle \mathbf {b} } \mathbf {b} 所构成的平面垂直的单位向量。这个定义有个问题,就是同时有两个单位向量都垂直于 a {\displaystyle \mathbf {a} } \mathbf {a} b {\displaystyle \mathbf {b} } \mathbf {b} :若 n ^ {\displaystyle {\hat {\mathbf {n} }}} {\hat  {​{\mathbf  {n}}}} 满足垂直的条件,那么 − n ^ {\displaystyle -{\hat {\mathbf {n} }}} {\displaystyle -{\hat {\mathbf {n} }}}也满足。“正确”的向量由向量空间的方向确定,即按照给定直角坐标系的左右手定则。若( i {\displaystyle \mathbf {i} } {\mathbf  {i}} j {\displaystyle \mathbf {j} } \mathbf{j} k {\displaystyle \mathbf {k} } \mathbf{k})满足右手定则,则( a {\displaystyle \mathbf {a} } \mathbf {a} b {\displaystyle \mathbf {b} } \mathbf {b} a × b {\displaystyle \mathbf {a} \times \mathbf {b} } {\displaystyle \mathbf {a} \times \mathbf {b} })也满足右手定则;或者两者同时满足左手定则。一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系满足右手定则,当右手的四指从 a {\displaystyle \mathbf {a} } \mathbf {a} 以不超过180°的转角转向 b {\displaystyle \mathbf {b} } \mathbf {b} 时,竖起的大拇指指向是 a × b {\displaystyle \mathbf {a} \times \mathbf {b} } {\displaystyle \mathbf {a} \times \mathbf {b} } 的方向。由于向量的叉积由坐标系确定,所以其结果被称为「伪向量」。


原文开始:

   

  罗德里格斯公式(Rodriguez formula)是计算机视觉中的一大经典公式,在描述相机位姿的过程中很常用。公式:

R=I+sin(θ)K+(1cos(θ))K2

  从旋转矩阵 R 讲起,在三维空间中,旋转矩阵 R 可以对坐标系(基向量组)进行刚性的旋转变换。

R=rxxryxrzxrxyryyrzyrxzryzrzz

  通常为了方便计算,基向量组中的向量是相互正交的且都为单位向量,那么 R 就是一个标准正交矩阵。两个重要性质:

  • RTR=R1R=E
  • |R|=1

  假设原坐标系基向量矩阵为 B ,旋转后的坐标系基向量矩阵为 C

B=[bxbybz]=100010001

C=RB

  其变换过程如图所示:

这里写图片描述

C=rxxryxrzxrxyryyrzyrxzryzrzz[bxbybz]

  根据线性代数的定义,旋转矩阵 R 就是从基向量矩阵 B 到基向量矩阵 C 的过渡矩阵。由于旋转矩阵 R 是标准3阶正交矩阵,故旋转矩阵 R 的自由度为3,这说明最少可以用三个变量来表示旋转矩阵 R ,这就是 罗德里格斯公式(Rodriguez formula)存在的基础。

  罗德里格斯公式(Rodriguez formula)首先要确定一个三维的单位向量 k=[kxkykz]T (两个自由度)和一个标量 θ (一个自由度)。





证明方法一:

这里写图片描述

(图片摘自Wiki)

  先考虑对一个向量作旋转,其中 v 是原向量,三维的单位向量 k=[kxkykz]T 是旋转轴, θ 是旋转角度, vrot 是旋转后的向量。

  先通过点积得到 v k 方向的平行分量 v

v=(vk)k

  再通过叉乘得到与 k 正交的两个向量 v w

v=vv=v(vk)k=k×(k×v)(1)
w=k×v

  这样,我们就得到了3个相互正交的向量。不难得出:

vrot=v+cos(θ)v+sin(θ)w

  再引入叉积矩阵的概念:记 K k=[kxkykz]T 的叉积矩阵。显然 K 是一个反对称矩阵。

K=0kzkykz0kxkykx0

  他有如下性质:

k×v=Kv

  为了利用该性质,需要将 vrot 代换为 v k 的叉积关系,先根据(1)式做代换:

v=v+k×(k×v)

  然后得到:
vrot=v+k×(k×v)cos(θ)k×(k×v)+sin(θ)k×v

  根据叉积矩阵性质:

vrot=v+(1cos(θ))K2v+sin(θ)Kv
vrot=(I+(1cos(θ))K2+sin(θ)K)v

  最后将 vvrot 换为 BC ,就是罗德里格斯公式的标准形式。

B=(I+(1cos(θ))K2+sin(θ)K)CR=I+(1cos(θ))K2+sin(θ)K

  方法一证毕。


在想理解公式一的时候,把W=kXv代入,能更方便理解一些。
就是这样,感谢原文作者分享

这篇关于罗德里格斯公式的推导过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160016

相关文章

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

Java通过ServerSocket与Socket实现通信过程

《Java通过ServerSocket与Socket实现通信过程》本文介绍了Java中的ServerSocket和Socket类,详细讲解了它们的构造方法和使用场景,并通过一个简单的通信示例展示了如何... 目录1 ServerSocket2 Socket3 服务器端4 客户端5 运行结果6 设置超时总结1

MongoDB搭建过程及单机版部署方法

《MongoDB搭建过程及单机版部署方法》MongoDB是一个灵活、高性能的NoSQL数据库,特别适合快速开发和大规模分布式系统,本文给大家介绍MongoDB搭建过程及单机版部署方法,感兴趣的朋友跟随... 目录前言1️⃣ 核心特点1、文档存储2、无模式(Schema-less)3、高性能4、水平扩展(Sh

MySQL中存储过程(procedure)的使用及说明

《MySQL中存储过程(procedure)的使用及说明》存储过程是预先定义的SQL语句集合,可在数据库中重复调用,它们提供事务性、高效性和安全性,MySQL和Java中均可创建和调用存储过程,示例展... 目录概念示例1示例2总结概念存储过程:在数据库中预先定义好一组SQL语句,可以被程序反复调用。

MySQL存储过程实践(in、out、inout)

《MySQL存储过程实践(in、out、inout)》文章介绍了数据库中的存储过程,包括其定义、优缺点、性能调校与撰写,以及创建和调用方法,还详细说明了存储过程的参数类型,包括IN、OUT和INOUT... 目录简述存储过程存储过程的优缺点优点缺点存储过程的创建和调用mysql 存储过程中的关键语法案例存储

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe