用计算机辅助实验系统做验证牛顿第三定律,用计算机辅助实验系统做验证牛顿第三定律的实验,如图...

2023-10-07 14:30

本文主要是介绍用计算机辅助实验系统做验证牛顿第三定律,用计算机辅助实验系统做验证牛顿第三定律的实验,如图...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

◎ 平衡力的定义

平衡状态:

物体保持静止或匀速直线运动的状态称为平衡状态。静止状态称为静平衡,匀速直线运动状态称为动平衡。

①对静止的理解静止与速度v=0不是一回事,物体保持静止状态,说明a=0,a=0,两者同时成立,若仅是v=0,a≠0,如上抛到最高点的物体,此时物体并不能保持静止,上抛到最高点的物体并非处于平衡状态。

②力学中,当物体缓慢移动时,往往认为物体处于平衡状态。

③“静止”与“匀速直线运动”看起来好像是两种不同的运动形式,但本质却相同,这是因为物体的初始运动状态不同,若初始状态物体是静止的,则物体会一直静止着;若初始状态是做匀速直线运动的,则物体必然会保持匀速直线运动的状态。

力的平衡:

作用在物体上的几个力的合力为零,这种情况叫做力的平衡。

平衡条件:

1.内容为了使物体保持平衡状态,作用在物体上的力必须满足的条件,即平衡条件。

2.共点力平衡条件物体在共点力作用下处于平衡状态的条件是所受合外力为零,即

b020870d847763872776afc7b87473e5.png

◎ 平衡力的知识扩展

二力平衡的关系是大小相等,方向相反,作用在同一直线上。两个力作用在同一物体上,无依赖关系,撤除一个,另一个力可依然存在,只是不再平衡。两个力作用效果可相互抵消,可叠加,可求合力且合力为零。两力的性质可相同,也可不同。

◎ 平衡力的知识对比

相互作用力与一对平衡力的对比:

775d1bf7d2f63404b0b0cd79387e72bd.png

3834888a5872a5423cfc12071bae703f.png

◎ 平衡力的知识点拨

解决平衡问题的常用方法:

1.合成法与分解法这两种方法常用在物体在三个力作用下处于平衡状态的问题:

合成法:将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡问题转化为二力平衡问题。

分解法:当物体受到三个共点力的作用处于平衡状态时,利用平行四边形对任意一个力沿另外两个力的作用线方向分解,则这两个分力分别与另外两个力等大反向。

无论是利用合成法还是利用分解法,都需要在作出平行四边形后再利用图中几何关系来解三角形,从而求出力的大小或方向,常用到的数学知识有:

(1)三角函数定义当出现直角三角形时,可利用三角函数的定义来求解力的大小或方向:

b5687d21c41f9c6fd96d8f0a66b25a7b.png

(2)正弦定理对于任意三角形,都有对边与对角的正弦比值相等,如图:

2e168f9f71a0f0385bb373eb8b94da70.png

08bb14a08966bd27bd201dd7345c3f78.png

(3)相似三角形当力的三角形与图中的几何三角形相似时,仍有对应边成比例的关系。如在图所示的装置中,各力之间满足下列关系:

978d1a25e4efa1b44e03d8ddbdb88f63.png 

6ccd952d69a4e5a3c3c2eb6096a8f982.png

(4)菱形的性质当有两个力大小相等时,求这两个力的合力或将第三个力分解,就会得到一个菱形。而菱形的对角线相互垂直平分,而且平分一组对角。如在处理涉及滑轮或光滑挂钩的平衡问题时,将滑轮或光滑挂钩两侧绳上的拉力合成,运算过程就相对简便。

(5)余弦定理有时还需用到余弦定理,如在图中,有

454c28409df72a49b4264361af5c3ef9.png

eb4d7a56081904a87eccf86bbf7d6873.png

2.矢量三角形法物体在三个力作用下处于平衡状态时,这三个力必可构成一封闭三角形。通过受力分析,画出物体受力示意图,将力平移后组成三角形。然后直接利用上面所述的数学知识解三角形。

3.正交分解法当物体受到多个共点力的作用处于平衡状态时,可以利用正交分解法建立坐标系,则有

63b0b2d2d0d7717741b9d9d107effa7e.png=0。通常根据平衡条件,应用正交分解法解题,在解决多个力平衡的问题时尤为方便。但是使用时应注意根据具体情况选择合适的坐标系,一般应遵循的原则为:不在坐标轴上的力越少越好,各力与坐标轴之间的夹角是特殊角为好。

4.整体法和隔离法以上几种方法的着眼点是物体受力情况,而整体法和隔离法是针对研究对象而言的,是解决连接体问题时需考虑的方法。

(1)整体法:它是把两个或两个以上的物体组成的系统作为一个整体来研究的一种分析方法,当只研究系统而不涉及系统内部的相互作用时一般可采用整体法。

(2)隔离法:它是将研究对象从周围物体(连接体)中隔离出来进行分析的方法。一般在研究系统内物体间相互作用时采用隔离法。

动态平衡问题的解决方法:

动态问题包括动态平衡问题的分析和动态非平衡问题的分析。

所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态中。

解动态平衡问题通常有两种方法:

1.图解法

对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的三角形或平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。

图解法通常使用在三力作用下或可等效为三力作用下的动态平衡问题。

(1)三个力的方向都不变。如图所示,此种情况下任一力增大时,其余两力也增大,反之亦然。

998db2dfbe0fbc963833aeddd861ff9d.png

(2)三个力中有一个力恒定,有一个力方向恒定。如图所示,此情况下可作出力的矢量三角形(或平行四边形),确定三角形中不变的边与方位不变的边,由线段长度及另一边的方位变化来确定力的大小、方向变化情况。

16ee844e45adde5b2426127e9b558165.png

2.解析法

对物体进行受力分析后,利用平衡条件列出方程,解出所判断量的表达式,利用有关数学知识讨论表达式得出答案。从物体受力数量来说,解析法与图解法不同。解析法不仅可以用来解决三个力作用下的动态平衡问题,并且对多个力作用下的动态平衡问题用解析法更方便。从解析法需引入的变量来看,可以是某一角度(这通常需要在力的三角形巾有一个角是不变的),也可以是某一线段的长度(这种情况下通常题目中出现的几何三角形与力的三角形相似),这是在三力作用下物体处于动态平衡。若是多个力作用下的动态平衡,通常以某一角度为变量,利用正交分解来获得平衡方程,进而得到要分析的物理量的表达式。

3.动态平衡中的滑轮模型对于轻质光滑动滑轮及与之作用相当的光滑挂钩、光滑环等,具有如下特征:

(1)两侧绳中张力相同;

(2)两侧绳与竖直方向夹角相等;

(3)绳与竖直方向的夹角θ取决于绳的总长度l及两悬点问水平距离

8b64ccd83d8c3f9358bac19f998ee5cc.png

◎ 平衡力的知识拓展

平衡物体的临界与极值问题的解决方法:

1.临界与极值问题

(1)临界问题某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态为临界状态,临界状态也可理解为“恰好出现”或“恰好不出现”某种现象的状态。平衡物体的临界状态是指物体所处平衡状态将要变化的状态,是物体所处的平衡状态将要被破坏而尚未被破坏的状态。涉及临界状态的问题叫临界问题。解决这类问题一定要注意 “恰好出现”或“恰好不出现”的条件。

(2)极值问题极值是指研究平衡问题中某物理量变化时出现的最大值或最小值。中学物理的极值问题可分为简单极值问题和条件极值问题,区分的依据就是是否受附加条件限制,如受附加条件限制,则为条件极值。

2.解决方法

(1)临界问题的解决方法解决临界问题的基本思维方法是假设推理法,即先假定物体处于某一状态,然后根据平衡条件及相关知识列方程求解,再根据求得的结果反过来推断物体在给定条件下应处的状态。

(2)极值问题的解决方法对于简单极值问题,可先对物体进行受力分析,然后由平衡条件列出方程,再明确题目中的物理量在什么条件下取极值,或在出现极值时有何物理特征,根据这些条件或特征去寻找极值。对于条件极值问题,有如下两种解决方法:

①解析法:根据物体的平衡条件列方程,在解方程时采用数学知识求极值。通常用到的数学知识有二次函数求极值,均值定理求极值,讨论分式求极值,三角函数求极值以及几何法求极值等。

②图解法:根据物体的平衡条件作出力的矢量图,如只受三个力时,则这三个力必构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值,此法简便、直观。

◎ 平衡力的考试要求

暂无

这篇关于用计算机辅助实验系统做验证牛顿第三定律,用计算机辅助实验系统做验证牛顿第三定律的实验,如图...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/158405

相关文章

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Oracle数据库在windows系统上重启步骤

《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默

在Linux系统上连接GitHub的方法步骤(适用2025年)

《在Linux系统上连接GitHub的方法步骤(适用2025年)》在2025年,使用Linux系统连接GitHub的推荐方式是通过SSH(SecureShell)协议进行身份验证,这种方式不仅安全,还... 目录步骤一:检查并安装 Git步骤二:生成 SSH 密钥步骤三:将 SSH 公钥添加到 github