最小二乘法——拟合平面方程(深度相机外参标定、地面标定)

2023-10-07 12:59

本文主要是介绍最小二乘法——拟合平面方程(深度相机外参标定、地面标定),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.最小二乘法

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

最小二乘法的矩阵形式为:
A x = b Ax=b Ax=b
其中 A A A n ∗ k n * k nk 的矩阵, x x x k ∗ 1 k*1 k1 的列向量, b b b n ∗ 1 n*1 n1 的列向量。如果 n > k n>k n>k(方程的个数大于未知量的个数),这个方程系统称为矛盾方程组 Over Determined System,如果 n < k n<k n<k(方程的个数小于未知量的个数),这个系统就是Under Determined System。

当找到向量 x x x 使得 ∣ ∣ A x − b ∣ ∣ ||Ax-b|| Axb 最小,则 x x x 为该方程的最小二乘解

求解最小二乘的方法有奇异值分解、正规方程、QR分解三种。本文中采用正规方程对平面方程进行拟合,以实现深度相机的外参标定。正规方程组的解为:
x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)1ATb

2.平面方程拟合

平面方程的一般表达式为
A x + B y + C z + D = 0 ( C ≠ 0 ) Ax+By+Cz+D=0 (C\neq0) Ax+By+Cz+D=0C=0
将其变换为如下形式
z = − A C x − B C y − D C z=-\frac{A}{C}x-\frac{B}{C}y-\frac{D}{C} z=CAxCByCD
a 0 = − A C ; a_0=-\frac{A}{C}; a0=CA; a 1 = − B C ; a_1=-\frac{B}{C}; a1=CB; a 2 = − D C ; a_2=-\frac{D}{C}; a2=CD;
z = a 0 x + a 1 y + a 2 z=a_0x+a_1y+a_2 z=a0x+a1y+a2
此时对应的最小二乘矩阵形式

A = ( x 1 y 1 1 x 2 y 2 1 . . . x n y n 1 ) ; x = ( a 0 a 1 a 2 ) ; b = ( z 1 z 2 . . . z n ) ; ( n ≥ 3 ) A=\begin{pmatrix} x_1&y_1&1\\x_2&y_2&1\\...\\x_n&y_n&1\end{pmatrix}; x=\begin{pmatrix}a_0\\a_1\\a_2\end{pmatrix};b=\begin{pmatrix} z_1 \\ z_2 \\ ...\\ z_n\end{pmatrix};(n\geq3) A=x1x2...xny1y2yn111;x=a0a1a2;b=z1z2...zn;(n3)

其中 ( x 1 , y 1 , z 1 ) , ( x 2 , y 2 , z 2 ) , . . . , ( x n , y n , z n ) (x_1,y_1,z_1),(x_2,y_2,z_2),...,(x_n,y_n,z_n) (x1,y1,z1),(x2,y2,z2),...,(xn,yn,zn)为输入的三维点坐标。

套用正规方程组的解,即可求得 ( a 0 , a 1 , a 2 ) ; (a_0,a_1,a_2); (a0,a1,a2);

3.标定——构造旋转矩阵

在实际使用中,经常会采用地面作为参照平面,将相机坐标系转化为世界坐标系,本文中使用最小二乘法对地面点云拟合平面方程,将相机坐标系Z轴旋转至垂直地面

如上求解出地面的平面方程系数,则平面方程一般式为:
a 0 x + a 1 y − z + a 2 = 0 a_0x+a_1y-z+a_2=0 a0x+a1yz+a2=0
其法向量为:
( a 0 a 0 2 + a 1 2 + 1 , a 1 a 0 2 + a 1 2 + 1 , − 1 a 0 2 + a 1 2 + 1 ) (\frac{a_0}{\sqrt{a_0^2+a_1^2+1}},\frac{a_1}{\sqrt{a_0^2+a_1^2+1}},\frac{-1}{\sqrt{a_0^2+a_1^2+1}}) (a02+a12+1 a0,a02+a12+1 a1,a02+a12+1 1)
求得平面法向量的单位向量为 n ⃗ \vec{n} n
相机坐标系的Z轴向量 z ⃗ \vec{z} z ( 0 , 0 , 1 ) (0,0,1) (0,0,1)
旋转向量为 r ⃗ \vec{r} r ,其中 r ⃗ \vec{r} r 方向为 n ⃗ × z ⃗ \vec{n}\times\vec{z} n ×z ,旋转角度为 θ = a r c c o s ( n ⃗ ⋅ r ⃗ ) \theta=arccos(\vec{n}\cdot\vec{r}) θ=arccos(n r )

使用 Eigen::AngleAxisd 将旋转向量转化为 Eigen::Matrix3d 的旋转矩阵。

4.代码

	//0.最小二乘拟合平面方程//planePoints存储相机坐标系选择地面区域内的所有三维点云Eigen::MatrixXd A(planePoints.size(), 3);Eigen::VectorXd b(planePoints.size());//将观测点输入矩阵for (int i = 0; i < planePoints.size(); i++){A(i, 0) = planePoints[i].x;A(i, 1) = planePoints[i].y;A(i, 2) = 1;b(i) = planePoints[i].z;}Eigen::MatrixXd AT = A.transpose();//使用最小二乘法求得系数向量Eigen::Vector3d x = (AT*A).inverse()*AT*b;//1.求解旋转矩阵//单位法向量double denominator = sqrt(x(0)*x(0) + x(1)*x(1) + 1);Eigen::Vector3d n(x(0) / denominator, x(1) / denominator, -1 / denominator);n = n.normalized();Eigen::Vector3d zdir(0, 0, 1);//求解两向量的旋转向量,点乘求夹角、叉乘求旋转方向。Eigen::AngleAxisd rotateVector(acos(n.dot(zdir)), n.cross(zdir).normalized());//获取旋转矩阵Eigen::Matrix3d zRotateMatrix = rotateVector.matrix();

5.结果

首先选择一系列三维点云(蓝色代表有点云),如下图:

在这里插入图片描述
未转化的相机坐标系下三维点云如下图:

在这里插入图片描述

用上述构造旋转矩阵进行点云坐标系变换,令Z轴方向垂直地面,结果如下:

在这里插入图片描述
在这里插入图片描述

这篇关于最小二乘法——拟合平面方程(深度相机外参标定、地面标定)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157908

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1