matlab使用Alexnet识别高速路牌

2023-10-07 10:10

本文主要是介绍matlab使用Alexnet识别高速路牌,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个经典的迁移学习案例,Alexnet本身需要下载,下载需要注册matlab账号,当然网上也有这个模型,随便下。

doc Alexnet doc trainFasterRCNNObjectDetector

就能查到官网提供的案例信息。

网上也有相关的案例可以参考,主要参考这两个:

MATLAB2017a使用FasterRcnn目标检测训练及其测试流程_不知名的小咸鱼的博客-CSDN博客_matlab目标检测

MATLAB2018b使用自己的数据训练faster-RCNN步骤及报错解决_是江姑娘呀-CSDN博客

当然实际使用肯定会有bug,需要慢慢调。

只要注意整体的格式,就行。运行的时候比较占内存。

clc
clear all
load('alexnet.mat',"net")image = imageDatastore('C:\Users\1\Desktop\matlab_test_net',...
'IncludeSubfolders',true,'LabelSource','foldernames');
layersTransfer=net.Layers(1:end-3);numClasses = numel(categories(image.Labels));layers = [layersTransferfullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFactor',20)softmaxLayerclassificationLayer];options = trainingOptions('sgdm', ...'MiniBatchSize',5, ...'MaxEpochs',20, ...'InitialLearnRate',0.0001);netTransfer = trainNetwork(image,layers,options)

 这块基本都是默认,改个照片存储路径就行,注意img是照片格式。

test= load('F:/xunlian/test.mat');     %it is not necessary
options = trainingOptions('sgdm', ...    
'InitialLearnRate', 1e-5, ...
'MaxEpochs', 20, ...                     %twenty times  训练深度不是越多效果越好,有可能适得其反,
'CheckpointPath', tempdir);
layer=netTransfer.Layers%这里输入的tsst不对,应该是一组数组,不是一个mat数。
naq = readtable('test_table_youdian.xls')%使用table 组合出数据,而不是从外部导入%naqq=table(test.gTruth.DataSource.Source,)
%对这个naq进行处理file = [] ;
aaa = test.gTruth.LabelData.biaozhi;
for i =1:30file2=[file;test.gTruth.DataSource.Source{i}];%table2array(test.gTruth.LabelData(2,1))end
file=naq.imageFilename;
naqqq=table(file,aaa)

这一块数据类型主要做成table型,

有两种方法 一种是从mat文件中提出数据然后table()组合

还有一种就是readtable()读excel中的数据,看你个人情况选择。

这里面的数据其实是,路径和切割的点

训练需要一些时间(补充一个重点,需要加一个backgroud文件夹,因为这个模型本质是个分类模型,至少要二分类也就是有两个数据集,假如遇到这个报错,参考上一个博客)

 之后将这个detector另存为mat格式

之后就是测试

img=imread("图片.jpg")
load('wangluo.mat')
[bbox,score,label] = detect(detector,img);
index = find(score>0.8);
bbox = bbox(index,:);
score = score(index,:);
label = label(index,:);
img = insertObjectAnnotation(img,'Rectangle',bbox,score);
img = insertShape(img,'Rectangle',bbox);
imshow(img)

测试图像如下所示:

很粗糙,但好在简单,方便,快。。。。。。

凑合用就行了,发论文就别想了。 

这篇关于matlab使用Alexnet识别高速路牌的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157664

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四