基于seq2seq的中国对联自动配对技术实践

2023-10-07 10:10

本文主要是介绍基于seq2seq的中国对联自动配对技术实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Sequence to Sequence模型这种基于编码--解码的模型已经被谷歌成功应用于机器翻译上。而理论上任意的序列到序列的有监督问题都可以用这种模型。如上一篇文章写的古诗生成。包括这一篇实践性的对联配对。

对对联生成过程中,需要使用LSTM来实现,然后需要设置其编码与解码的相关参数。如下所示:

# 创建基本的LSTM单元
cells = [tf.contrib.rnn.DropoutWrapper(tf.contrib.rnn.BasicLSTMCell(embedding_dim), output_keep_prob=keep_prob) for i in range(3)]stacked_lstm = tf.contrib.rnn.MultiRNNCell(cells)with tf.variable_scope('decoders') as scope:# feed_previous=False, for trainingdecode_outputs, decode_state = tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(encode_input,decode_input,stacked_lstm,num_encoder_symbols=input_vocab_size,num_decoder_symbols=output_vocab_size,embedding_size=embedding_dim)scope.reuse_variables()decode_outputs_test, decode_state_test = tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq(encode_input,decode_input,stacked_lstm,num_encoder_symbols=input_vocab_size,num_decoder_symbols=output_vocab_size,embedding_size=embedding_dim,feed_previous=True)loss_weights = [tf.ones_like(l, dtype=tf.float32) for l in labels]
loss = tf.contrib.legacy_seq2seq.sequence_loss(decode_outputs, labels, loss_weights, output_vocab_size)optimizer = tf.train.AdamOptimizer(0.001)
train_op = optimizer.minimize(loss)


(2) 测试例子如下:其中挂号内为原有的配对。

测试例子:
悼念先严三周年▁▁▁(痛表后生一片心▁▁▁) -> 诗留人间百年诗▁▁▁
百岁人歌长寿酒▁▁▁(万载花开太平春▁▁▁) -> 千秋再爱自长春▁▁▁
黄花酿酒三杯醉▁▁▁(绣阁增辉两烛燃▁▁▁) -> 碧水池霜百岁人▁▁▁
艳阳照大厦春华竞发▁(甘露洒人间瑞气勃生▁) -> 看日开新地壮天更高▁
延龄人种神仙草▁▁▁(纪竹新开甲子花▁▁▁) -> 蜜月欣逢百岁图▁▁▁


测试例子:
白发朱颜喜登上寿▁▁(丰衣足食乐享晚年▁▁) -> 丰山足食享享高秋▁▁
体健神恰晚景好▁▁▁(书声墨韵老来红▁▁▁) -> 天明萱草喜无鸯▁▁▁
大好良辰春光明媚▁▁(重开令甲上寿期颐▁▁) -> 文明盛世喜此如山▁▁
宝马迎来云外客▁▁▁(香车送出月中仙▁▁▁) -> 金牛犁栋喜雄风▁▁▁
莲子杯中金各酒▁▁▁(桃花盏上玉台诗▁▁▁) -> 桃香嫩柳柳丝凰▁▁▁

测试例子:
赏灯极乐繁华地▁▁▁(秉灯同游不夜天▁▁▁) -> 养手同来幸福花▁▁▁
寒笳送走人间腊▁▁▁(晓角吹回雪里春▁▁▁) -> 夜雨梅花蝶萝香▁▁▁
知识鼓满青春风帆▁▁(劳动展开爱情羽翼▁▁) -> 赤策文章浩气清风▁▁
贮在玉壶由人造▁▁▁(结成晶块夺天工▁▁▁) -> 誓知甘作口子余▁▁▁
灰飞薛管声谐凤▁▁▁(玉种蓝田兆梦熊▁▁▁) -> 何洁堪媳荐良仑▁▁▁

针对这两种测试,也验证了人工智能是否真的会创作。利用这种seq2seq写出的古诗或者对联,的确会出现训练集合外的句子,非常有意思,完全是创作的味道。不过呢,目前的仅仅还是测试例子,对语义上有些地方,特别是里面的思想和语义理解还有待深入。这可能需要更多的知识、常识、典故等的配合。

这篇关于基于seq2seq的中国对联自动配对技术实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157641

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩