等比数列(幂级数)的意义和应用

2023-10-07 09:10

本文主要是介绍等比数列(幂级数)的意义和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://blog.sina.com.cn/s/blog_5701b67c01011u4y.html

等比数列(幂级数)的意义和应用

 

幂级数在理工科分析中有重要意义,其中最重要的即所谓的泰勒级数。但这里讨论其中最简单的幂级数,也就是所谓的“无穷等比数列”。

等比数列(幂级数)的意义和应用                      (1)

对上式的讨论不失一般性。

对于无穷级数,自然首先要讨论的是它的收敛性,而式(1)即是我们熟知的等比数列,只是现在该数列有无穷多项,有限等比数列有求和公式:

等比数列(幂级数)的意义和应用                            (2)

证明上式需要用到数学归纳法

 

等比数列(幂级数)的意义和应用

 

 

∴设等比数列(幂级数)的意义和应用

等比数列(幂级数)的意义和应用

等比数列(幂级数)的意义和应用

得证

显然(2)式的收敛域为:(-1,1),那么在该收敛域内有和函数

等比数列(幂级数)的意义和应用

于是有下面两个重要的级数展开

级数1

等比数列(幂级数)的意义和应用               (3)

其证明如下:

等比数列(幂级数)的意义和应用

对两边进行积分

等比数列(幂级数)的意义和应用             

上式中,因为x=0时,左边等于0,所以C=0。进而

等比数列(幂级数)的意义和应用              

注意(3)式的收敛域,因为把x=1代入时,根据莱布尼茨辨别法,上式右边的级数是收敛的。

得证

级数2

等比数列(幂级数)的意义和应用          (4)

其证明如下:

等比数列(幂级数)的意义和应用

同样对两边积分

等比数列(幂级数)的意义和应用

同样因为x=0时,arctan(0)=0,所以C=0。因此

等比数列(幂级数)的意义和应用

同样把x=±1代入上式右端时,根据莱布尼茨辨别法是收敛的。

得证

这个简单的级数在实际问题中的应用主要是x<<1时,级数可以略去高阶小项,如

等比数列(幂级数)的意义和应用

下面举两个实际例子。

1

因为MOS管沟道夹断时漏电流公式为

等比数列(幂级数)的意义和应用                         (5)

此时继续增大漏源电压VDS,就会引起所谓的“沟道长度调制效应”,既有

L'=L-ΔL,这时上面的公式中的L就要被L'取代,但是由于不知道ΔL具体是多少,所以直接代入意义不大。当认为ΔL<<L,则有

等比数列(幂级数)的意义和应用

代入(5)式,有

等比数列(幂级数)的意义和应用

这里ID0是沟道刚夹断时的漏电流。而λ是一个与工艺有关的参数,那么ΔL/L≈λVDS有什么依据?如下图

等比数列(幂级数)的意义和应用

沟道长度调制效应

当认为VDS1>>VGS-VTH时(图1实际上对VGS-VTH有所夸张),则ΔIDS=IDS1-IDS0VDS1近似成线性关系,因此当通过实测或仿真得到MOS晶体管的输出特性曲线后可以据曲线近似得到λ的值。

2

爱因斯坦的狭义相对论理论中,有著名的质能方程E=mc2,而牛顿理论有动能方程E=(1/2)mv2。由于低速情况下,牛顿理论已经获得巨大的成功。因此新的理论不能否定牛顿理论在低速情况下的正确性,所以当v<<c时,质能方程要与牛顿理论相融洽。

当然质能方程中的质量是动质量,根据相对论有

等比数列(幂级数)的意义和应用         (6)

 

可见当物体低速运动时,能量有两部分:一部分为以静质量形式存在的“固有能量”,另一部分是动能,这部分退化为牛顿动能理论的形式。m0是物体的静质量。上面β=v/c,而在忽略高阶小项时之所以把β4拆开,而忽略(3/4)β4之后的部分在于这样容易开根号,当然还可以任意得选择忽略高阶小项,最后还是得到相同结果,或者干脆只留下m0c2。因为从上面的结果可以看出,速度远小于光速时动能相比与固有能是很小的,但这不是我们讨论的目的。

这篇关于等比数列(幂级数)的意义和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/157402

相关文章

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

Java应用如何防止恶意文件上传

《Java应用如何防止恶意文件上传》恶意文件上传可能导致服务器被入侵,数据泄露甚至服务瘫痪,因此我们必须采取全面且有效的防范措施来保护Java应用的安全,下面我们就来看看具体的实现方法吧... 目录恶意文件上传的潜在风险常见的恶意文件上传手段防范恶意文件上传的关键策略严格验证文件类型检查文件内容控制文件存储

CSS3 布局样式及其应用举例

《CSS3布局样式及其应用举例》CSS3的布局特性为前端开发者提供了无限可能,无论是Flexbox的一维布局还是Grid的二维布局,它们都能够帮助开发者以更清晰、简洁的方式实现复杂的网页布局,本文给... 目录深入探讨 css3 布局样式及其应用引言一、CSS布局的历史与发展1.1 早期布局的局限性1.2