一看就懂的主席树(不带修),逐句代码分析

2023-10-07 05:32

本文主要是介绍一看就懂的主席树(不带修),逐句代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

俗话说,一切高深莫测的算法都是乱搞搞出来的
主席树,顾名思义 ,就是在线段树上乱搞。
主席树是用来解决区间问题的,比如说区间第k小···

先举一个用线段树来做的栗子:

题意:给定一个长度为n的序列,输入每一个数 a[i] 后都有一个询问,询问从第一位到第 i 位第 ki 小的数;
样例:
5
3 1
2 2
1 2
4 4
2 3

这里讲讲线段树的做法。

首先,先对数据进行离散化操作
我们要建一个空树,其中存储着每一区间中的数出现的次数。
就像这样:

在输入每一个数的时候,我们要把这个数插到树中。即所对应区间出现次数+1;
这里给出在输入第五个数之后的树,就是这个样子的:

在这里插入图片描述
(以第五个数据为例)现在开始查找第3小的数,我们从根节点开始查找,如果左儿子的值大于等于k,我们就往左搜,因为第k小的数肯定在左儿子对应的区间里,如果左儿子的值要小于k,我们就往右搜,因为第k小的数肯定在左儿子对应的区间里。以此类推,直到找到第k小的数为止。

接下来我们开始真正的主席树了——

题意:给定一个长度为n的序列,有q次询问,询问从第 l 位到第 r 位第 k 小的数;
样例:
5 5
3 2 1 4 2
2 2 1
3 4 1
4 5 1
1 2 2
4 4 1
分析:这里与上个问题不同的是引入了区间这一问题,这就使得线段树无法解决问题了。

该怎么办呢?可以在线段树上乱搞啊!这便是接下来要讲的主席树做法。

让我们来梳理一下思路
我们先建一棵跟空树没什么区别的树,这棵树跟上面问题的空树是一样的,存储着每一区间中的数出现的次数。
还是这样:

建树代码如下(很简单的)

int build(int l,int r)//其实只是建一个空树 
{int now=++cnt;if(l<r){int mid=(l+r)>>1;p[now].l=build(l,mid);p[now].r=build(mid+1,r);}return now;
}

我们进行的是离线操作
首先,排序+去重,通过unique来快速实现。某大佬的unique详解,不懂戳这
然后再插入序列中每一个数时,通过lower_bound来找到这个数应该在的位置 某巨佬的lower_bound详解,不懂戳这
这两步的目的是离散化,方便建树。
离散化代码:

	n=read(),q=read();for(int i=1;i<=n;i++)a[i]=read(),b[i]=a[i];sort(b+1,b+1+n);m=unique(b+1,b+1+n)-b-1;//去重build(1,m);//建空树for(int i=1;i<=n;i++){int num=lower_bound(b+1,b+1+m,a[i])-b;//说白了就是按照大小顺序给该点编个号build_new(i,num);//改链,下面马上讲}

插入一个数后,该数对应区间的值都+1,
从图上来看,这个位置影响了一条链;所以我们应该把整条链给改了,但在改链的同时要保留前面的旧树,因为这是主席树操作的需要。
改链就像这样,我们以样例第一个数来说

在这里插入图片描述

在这里我们建立了三个新点:10号、11号和12号,要注意图中虽然把1、2、5划掉了,但程序中并不是删掉,也没有改值。
新建成的点将拥有插入第一个数之后的值。

改链后形成了一棵新的树。

不过这棵新的树和旧树共用一部分节点。
把这些节点放在一起看根本不是一棵树,因为这就是一堆树组合起来的了。
这些树在空间上是相连的,但在关系上是独立的。我们很容易就可以发现,每一个根节点都可以在一定程度上代表一棵树,因为从每一个根节点向下遍历,得到的都是在插入该根节点后得到的新树(这个地方可以画图理解一下)。
在更改一条链的过程中,首先建一个新点,作为新树的根节点 ;
知道要插入的数的值了,就看他影响左儿子还是在右儿子。
如果影响右儿子(即该点数值在右儿子对应的区间里),就建立一个新点,作为新树上一节点的右儿子,
然后把父节点和影响不到的左儿子连接起来,我们就不用管这个点左边的东西了 ;
如果影响左儿子,一样,建一个新点表示左儿子,连右边的节点;
然后我们再用sum数组记录一下每个节点所对应区间已经插入的数的个数 ,即该点的值;
这样就建立了n棵互不相同但是空间相似度很大的树;
我们用tree数组来记录每一棵树的根节点,在某种程度上可以代表一棵树,因为从每一个根节点递归遍历下来都可以得到一棵树 ,这棵树就是在插入该树根节点后得到的新树;

代码如下:


//cnt:要插入的节点的编号
//tree[i]:第i个“线段树”根节点编号、
//p[i]: i号点的左右儿子 
//sum[i]: i号点的值,即i号点对应区间中数的个数 void change(int l,int r,int now,int past,int num)
void build_new(int mark,int num)
{//mark:当前建树的编号//num:该插入的数的值tree[mark]=++cnt;sum[cnt]=sum[tree[mark-1]]+1;change(1,m,cnt,tree[mark-1],num);
}
void change(int l,int r,int now,int past,int num)
{//l,r:左右区间//now:新树当前节点编号 //past:上一棵树的当前节点编号,if(!p[past].l&&!p[past].r)return;int mid=(l+r)>>1;if(num>mid)//这个点属于右边,就改右边,左边不动 顺着past下来 就不用管左边了{p[now].l=p[past].l;//直接连上原树的左儿子作为新树的左儿子 p[now].r=++cnt;//开新点,作为上一新点的右儿子 sum[p[now].r]=sum[p[past].r]+1;//别忘了点权+1 (当然是要加到新点上啦) change(mid+1,r,p[now].r,p[past].r,num);}else{//左边,一样道理p[now].r=p[past].r;p[now].l=++cnt;sum[p[now].l]=sum[p[past].l]+1;change(l,mid,p[now].l,p[past].l,num);}
}

改链完成后,就可以查询了
假如说我们要查[3,5](输入顺序)范围内的第k小
类比于线段树查总区间第k小的方法,我们要把[3,5]区间看成一个线段树
怎么看呢?总不能硬生生地建树吧
这里要用到前缀思想
比如说我们要求 [3,5] 中的第k小
我们可以用 [1,5] 的每一个节点减去 [1,2] 的每一个节点,得到的就是 [3,5] 区间所对应的线段树的值
看图易于理解(左图为 [1,2] ,右图为 [1,5],编号略去):
在这里插入图片描述
两树对位相减,得到的就是 [3,5] 区间所对应的线段树的值;
如下:
在这里插入图片描述

由此我们可以得出,[3,5] 对应的线段树上每一个节点的值,等于 [1,5] 对应的线段树与 [1,2] 对应的线段树相同位置上的节点值之差。
于是我们就可以用 [1,5] 对应的线段树和 [1,2] 对应的线段树来表示 [3,5] 对应的线段树了。
参照线段树求第k小值的方法,我们得到以下代码:


int search(int a,int b,int l,int r,int k)
{//a,b:区间首尾两树当前节点(一定在不同数的同一个位置)//l,r:查询区间,左or右 if(l==r)return l;int lm=sum[p[b].l]-sum[p[a].l];//两节点左儿子相减,所得的值就是所查询区间(输入顺序)内的数在对应节点数值区间的个数 int mid=(l+r)>>1;if(k<=lm)return search(p[a].l,p[b].l,l,mid,k);return search(p[a].r,p[b].r,mid+1,r,k-lm);//mid前面有lm个数都给做掉了,所以只需要在 [mid+1,r] 中找出第k-lm小的数就可以了
}

到这里就已经完成所有的关键操作了。

最后给出完整代码,变量名和意义和上面讲的一样

由于线段树要开4倍空间,我们的主席树每次要更改一条链,即log(n)个节点,所以空间复杂度为4n+qlog(n);
一般我们开1<<5倍的空间(32*n)

#include<bits/stdc++.h>
using namespace std;
int n,q,m,cnt,a[200005],b[200005],x,y,k;
int tree[200005],sum[4000005];
struct mp{int l,r;
}p[4000005];
int read()
{long long f=0,p=1;char c=getchar();while(c<'0'||c>'9'){if(c=='-') p=-1;c=getchar();}while(c>='0'&&c<='9'){f=f*10+c-'0';c=getchar();}return p*f;
}
int build(int l,int r)
{int now=++cnt;if(l<r){int mid=(l+r)>>1;p[now].l=build(l,mid);p[now].r=build(mid+1,r);}return now;
}
void change(int l,int r,int now,int past,int num)
{if(!p[past].l&&!p[past].r)return;int mid=(l+r)>>1;if(num>mid){p[now].l=p[past].l;p[now].r=++cnt;sum[p[now].r]=sum[p[past].r]+1;change(mid+1,r,p[now].r,p[past].r,num);}else{p[now].r=p[past].r;p[now].l=++cnt;sum[p[now].l]=sum[p[past].l]+1;change(l,mid,p[now].l,p[past].l,num);}
}
void build_new(int mark,int num)
{tree[mark]=++cnt;sum[cnt]=sum[tree[mark-1]]+1;change(1,m,cnt,tree[mark-1],num);
}
int search(int a,int b,int l,int r,int k)
{if(l==r)return l;int lm=sum[p[b].l]-sum[p[a].l];int mid=(l+r)>>1;if(k<=lm)return search(p[a].l,p[b].l,l,mid,k);return search(p[a].r,p[b].r,mid+1,r,k-lm);
}
int main()
{n=read(),q=read();for(int i=1;i<=n;i++)a[i]=read(),b[i]=a[i];sort(b+1,b+1+n);m=unique(b+1,b+1+n)-b-1;tree[0]=1;build(1,m);for(int i=1;i<=n;i++){int num=lower_bound(b+1,b+1+m,a[i])-b;build_new(i,num);}for(int i=1;i<=q;i++){x=read(),y=read(),k=read();printf("%d\n", b[search(tree[x-1],tree[y],1,m,k)]);}
}

完结撒花~

这篇关于一看就懂的主席树(不带修),逐句代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/156351

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计