DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数)

本文主要是介绍DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

DecisionTreeClassifier重要参数

1.criterion

要将表格转化成一颗树,决策树需要找出最佳节点和最佳的分枝方法,对分类树来说,衡量这个“最佳”指标“叫做不纯度

criterion这个参数正是用来决定不纯度的计算方法。sklearn提供了两种选择:
1)输入”entropy“,使用信息熵
2)输入”gini“,使用基尼系数
决策树的基本流程:
直到没有更多的特征可用,或整体的不纯度已经最优,决策树就会停止生长。
建立一颗树
#######实现一棵树,随机性参数,导入需要用到的模块库
from sklearn import tree
from sklearn.datasets import load_wine  # 自带的各种数据
from sklearn.model_selection import train_test_split
# 2.观察数据的形式
wine = load_wine()   # 数据实例化 
# 特征列
wine.data
wine.data.shape  # 查看结构# 标签列
wine.target
import pandas as pd
pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)  # 将两部分变成一个表
# 3.分训练集和测试集
Xtrain,Xtest,Ytrain,Ytest = train_test_split(wine.data,wine.target,test_size = 0.3) # 百分之三十做测试集,百分之七十做训练集
# 4.建立模型
clf = tree.DecisionTreeClassifier(criterion = 'entropy')  # 实例化参数
clf = clf.fit(Xtrain,Ytrain)   # 用训练集数据做训练模型
score = clf.score(Xtest,Ytest)  # 导入测试集,返回预测准确度accuracy
score #  查看预测准确度############5.画一颗树
import graphviz
feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']
# 定义决策树要画的树
dot_data = tree.export_graphviz(clf,feature_names = feature_name,class_names = ['琴酒','雪莉','贝尔摩德'],filled = True,rounded = True)
graph = graphviz.Source(dot_data)
graph
# 6.探索决策树
# 特征重要性
clf.feature_importances_[*zip(feature_name,clf.feature_importances_)]  # 将定义的特征名与特征值连起来观察

第5步已经生成一棵决策树

2、random_state & splitter

# random_state & splitter
clf = tree.DecisionTreeClassifier(criterion="entropy",random_state=30    # 用来设置分枝中的随机模式的参数
#                                   ,splitter="random"  # 用控制决策树中的随机选项,如果加上之后准确率反而降低,可以注掉)
clf = clf.fit(Xtrain, Ytrain)
score = clf.score(Xtest, Ytest)
score

可以得到准确度,然后画出一棵树

import graphviz
dot_data = tree.export_graphviz(clf,feature_names= feature_name,class_names=["琴酒","雪莉","贝尔摩德"],filled=True,rounded=True)  
graph = graphviz.Source(dot_data)
graph

此时画出的时,随机性更高,根据对random_state参数的设置,也可以解决每次画出的树都不是同一棵树的问题了。

3、剪枝参数

在不加限制的情况下,一棵决策树会生长到衡量不纯度的指标最优,或者没有更多的特征可用为止。这样的决策树
往往会过拟合,这就是说, 它会在训练集上表现很好,在测试集上却表现糟糕。 我们收集的样本数据不可能和整体
的状况完全一致,因此当一棵决策树对训练数据有了过于优秀的解释性,它找出的规则必然包含了训练样本中的噪
声,并使它对未知数据的拟合程度不足。
#我们的树对训练集的拟合程度如何?
score_train = clf.score(Xtrain, Ytrain)
score_train
max_depth
限制树的最大深度,超过设定深度的树枝全部剪掉
min_samples_leaf &min_samples_split
min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少 min_samples_leaf 个训练样本,否则分
枝就不会发生,或者,分枝会朝着满足每个子节点都包含 min_samples_leaf 个样本的方向去发生
min_samples_split 限定,一个节点必须要包含至少 min_samples_split 个训练样本,这个节点才允许被分枝,否则
分枝就不会发生。
max_features & min_impurity_decrease
一般 max_depth 使用,用作树的 精修
如何确定最优的剪枝参数?
# 观察一个最优的剪枝参数
import matplotlib.pyplot as plt
test = []
for i in range(10):
    clf = tree.DecisionTreeClassifier(criterion="entropy"
                                  ,random_state=30 # 输入任意一个整数,都会让树稳定下来
                                  ,splitter="random"
                                  ,max_depth=3
#                                  ,min_samples_leaf=10 # 用来显示分支之后的叶子节点的最少个数,如果加上之后精度降低,则注掉
                                  ,min_samples_split=10 # 一个节点至少含有的节点个数,才允许被分支,如果加上之后精度降低,则注掉
                                 )
    clf = clf.fit(Xtrain,Ytrain)
    score = clf.score(Xtest,Ytest)
    test.append(score)
plt.plot(range(1,11),test,color='red',label ='max_depth')
plt.legend()
plt.show()
## 既达到测试集的拟合程度最高,又达到了节省计算空间
4、目标权重参数
class_weight & min_weight_fraction_leaf
完成样本标签平衡的参数。 使用 class_weight 参数对样本标签进行一定的均衡,给 少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认 None ,此模式表示自动给与数据集中的所有标签相同的权重。 有了权重之后,样本量就不再是单纯地记录数目,而是受输入的权重影响了,因此这时候剪枝,就需要搭配 min_ weight_fraction_leaf 这个基于权重的剪枝参数来使用。
重要接口:
决策树最常用的接口包括 fit、score、apply、predict
#  apply 用来返回每个测试样本所在的叶子节点的索引
clf.apply(Xtest)
# predict 用来返回每个测试样本的分类/回归结果
clf.predict(Xtest)
所有接口中要求输入 X_train X_test 的部分,输入的特征矩阵必须至少是一个二维矩阵。 sklearn 不接受任何一维矩阵作为特征矩阵被输入。 如果你的数据的确只有一个特征,那必须用 reshape(-1,1) 来给 矩阵增维;如果你的数据只有一个特征和一个样本,使用reshape(1,-1) 来给你的数据增维。
属性:
属性是在模型训练之后,能够调用查看的模型的各种性质。对决策树来说,最重要的是 feature_importances_ ,能
够查看各个特征对模型的重要性。
(根据菜菜的机器学习整理)

这篇关于DecisionTreeClassifier重要参数、属性、接口(实现一棵树,随机性参数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/155931

相关文章

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3