使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)...

本文主要是介绍使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

函数格式 scipy.optimize. linprog ( c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None ) 今天阅读数据建模第一章线性规划问题,问题描述如下: 通过介绍我们知道了线性规划,就是目标函数及约束条件均为线性函数。 通过画图我们可知,X1,X2的最优解为2,6,目标值为26。 我们如何时候这个scipy的公式来计算这个值呢:
>>> c = [-1, 4] >>> A = [[-3, 1], [1, 2]] >>> b = [6, 4] >>> x0_bounds = (None, None) >>> x1_bounds = (-3, None) >>> from scipy.optimize import linprog >>> res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds), ... options={"disp": True}) >>> print(res) Optimization terminated successfully.  Current function value: -11.428571  Iterations: 2 status: 0 success: True fun: -11.428571428571429 x: array([-1.14285714, 2.57142857]) message: 'Optimization terminated successfully.' nit: 2

上面是官方给出的案例,我们很难看出来这个怎么求解最大值,不过英语好的也可以把。 言归正传,我们先结合官网是思路得出最小值的解。
In [1]:c = np.array([4,3])
In [1]:a = np.array([[2,1],[1,1]])
In [1]:In [1]:b = np.array([10,8])
In [1]:optimize.linprog(c,a,b,bounds=((0,None),(0,7)))
Out[1]:
     fun: -0.0
 message: 'Optimization terminated successfully.'
     nit: 0
   slack: array([ 10.,   8.,   7.])
  status: 0
 success: True
       x: array([ 0.,  0.])
按照正常的计算 我们得出了最小值为0,且x的两个值为 0 , 0。对于上面的的公式有必要说明的是,bounds是针对x的最大最小一次给一个值,从题目可知,x1的取值范围为大于0,最小值就为0,最大值没有约束,被其他的条件所约束就可以了 ,没有明确,所以是写的 (0,None),而相对x2来说,他最小值为0,最大值被C约束,为7。所以范围为(0,7),当有三个求解的时候,依次增加,不可省略。 接下来我们说这个最大值怎么求,其实只要对C取反我们就可以求除最大值的负数,对结果在取反回来就可以了
In [1]:optimize.linprog(-c,a,b,bounds=((0,None),(0,7)))
Out[1]:
fun: -26.0
message: 'Optimization terminated successfully.'
nit: 2
slack: array([ 0., 0., 1.])
status: 0
success: True
x: array([ 2., 6.])

是不是很简单,得到的-26取反回来就是我们的最大值求解了,(2,6)就是我们的X1,X2取值了。其实有时候那个条件为>,>=的时候我们要写成<,<=的模式,一样对参数和结果取反就行了。 我这里在补充一个求三个解的实例: 我们的最优解为 14.57

转载于:https://www.cnblogs.com/zhilangtaosha/p/5745556.html

这篇关于使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/155038

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有