SV中宏的用法总结(System Verilog Macro: A Powerful Feature for Design Verification Projects)

本文主要是介绍SV中宏的用法总结(System Verilog Macro: A Powerful Feature for Design Verification Projects),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:https://www.design-reuse.com/articles/45979/system-verilog-macro-a-powerful-feature-for-design-verification-projects.html

System Verilog Macro: A Powerful Feature for Design Verification Projects

By Ronak Bhatt, Verification Engineer, eInfochips
System Verilog Macro: A Powerful Feature for Design Verification Projects
By Ronak Bhatt, Verification Engineer, eInfochips

For any design verification (DV) project, following best coding practices make life easier for the teammates. On the other hand, bad coding style leads to a lot of issues when the code is reused, or when it is handed over from one owner to another for any future enhancements. At times, it leads to a lot of rework and patches in the code, and makes the code really difficult to maintain in later stages of the project or for the future projects where it needs to be reused.

Quite often, while working on a design verification project, a need arises to divide a larger piece of code into a smaller chunks to make the code easier to read and debug (and also for the reusability purpose). Such smaller pieces of codes can be used at varied locations in the DV environment for multiple components/modules, etc.

Tasks and functions can be used to break the large, complex code into smaller and much simpler pieces of code which is easy to read and understand. Functions and tasks are mainly used to execute common functionality at several places in verification environment, but their usage is limited to the module or class access boundary in which they are defined. For some piece of code which is common and frequently used in different and completely isolated modules, the function/task can’t be directly reused due to their access boundary limitations.

To take a simple example, if a task-function has common code for two different monitors and for two different interfaces, a DV engineer mostly adds duplicate code in both the monitors. There are many other cases where we see code duplication. “System Verilog Macro” is one of the many solutions to address such duplication.

Such macro is very efficient and can help save a lot of time if used properly in the SV environment. This paper talks about such SV Macro and their syntaxes and also offers a few examples of where it can be used to save time during design verification.

What is a macro?

The term ‘macro’ refers to the substitution of a line or a few lines of text code. The directive “`define” creates a macro for substitution code. Once the macro is defined, it can be used anywhere in a compilation unit scope, wherever required.

It can be called by (`) character followed by the macro name. A macro can be defined with argument(s). Argument(s) are useful to customize the macro to use widely, like a function-task. Such macro argument(s) can be defined with default values so that if an DV engineer won’t pass any specific value, the macro substitutes the default value.

Macro Examples

Single line macro:在这里插入图片描述

As shown in the sample code above, macro “val” and “addition” are single line macros.

Multiline macro:
在这里插入图片描述

The above code is an example of a multiline macro. As shown above, for the multiline macro, the new line is preceded by a backslash “”. If the backslash is not present for a line, it is considered as the last line of the macro. The backslash will not be present in actual code where the macro is used and where the actual macro code is substituted.

Note: There should be no space or character after the backslash “” at the end of a line –otherwise the compiler shouts an error.

Possible syntaxes used to define a macro based on the usage of the below three special characters (quotations) along with the arguments, the actual code that it replaces has a different meaning. All possible macros can be formed using these three quotes:

  1. “``” (Double tick)

The “``” quotation can be used to form a signal/variable name by using given argument.
在这里插入图片描述

Example:

Macro definition:

在这里插入图片描述

Macro usage:

在这里插入图片描述

Actual code the macro replaces:

在这里插入图片描述

We can see the ARG1 = 3 is used to form the variable’s name. (I.e. m_mst_3 and mst_3_lcl)

  1. “`” “(Tick followed by a double quote)

The “`” “ quotation can be used to interpret the argument as a string. Example:

Macro Definition:

在这里插入图片描述

Macro usage:

在这里插入图片描述

Actual code the macro replaces:

在这里插入图片描述

We can see the ARG1 is replaced with string name “a” in the $display statement.

  1. \” “(Tick followed by backslash followed by a double quote)

The “ `\” “ quotation is used to replace the argument with an escape sequence.

Example:

Macro definition:

在这里插入图片描述

Macro usage:
在这里插入图片描述

Actual code the macro replaces:
在这里插入图片描述

We can see that the argument is replaced with “ ”reg_a” “ in the $display line which prints as “Reg name : “reg_a”, value : ‘hXYZ” when it is executed.

The below section shows basic examples of use case scenarios where the macros can be used based on the DV needs. The usages of such macro can be extended to many more use cases.

Macro usage for coverpoint(s)

If the DV engineer wants to cover walk0/walk1 pattern bins of multiple variables of same width, then he/she can create and use the macro for all such signals for which walk1/walk0 cover bins are required.

Example:

Macro definition:

在这里插入图片描述

Macro usage:
在这里插入图片描述

Macro usage for a covergroup

Many times in a verification project, there is a need to write the same coverage at different places, for example, same code in master and slave components. We can define common macro for covergroup, which can be used in all such components.

Example:

Macro definition:

在这里插入图片描述

Macro usage:

在这里插入图片描述

“STRING” is an argument to the “bus_cg_macro” macro. Covergroup, coverpoints and their bins are substituted considering the “STRING” argument wherever the macro is used.

Macro usage in SV Assertion

As with coverage, many times in DV projects, we have some common assertions which can be used at multiple places and different components.

For example, there is a need to check that in master and slave, a signal value keeps changing at every clock cycle if the reset is not present. We can define a macro and use it for both master and slave.

Macro definition:

在这里插入图片描述

Macro usage:

在这里插入图片描述

Macro usage in Test Case Code

In a self-checking register write/read test, after each read, the read value is checked against expected read data. Considering design complexity, we may have multiple blocks and for each block we may have corresponding register test. For each such test we can have a common macro for self-check.

Self-check macro:

在这里插入图片描述

Macro usage:

在这里插入图片描述

Macro usage in Procedural block

Macro to cover procedural block code which is common across multiple places.

Macro for procedural block:

在这里插入图片描述

Macro usage:

在这里插入图片描述

This paper covers a few example macros, but DV engineers can create and use similar macros as per their project requirement and for reusability purpose.

Conclusion

Using SV macro, with the proper syntaxes explained in this paper, the DV engineer can break up the larger complex code in smaller chunk and can reuse it at many places. A macro can be used anywhere in the compilation unit after it is defined. The engineer can form identifier names using macro through input arguments.

Also, he/she can reuse names which are being used by ordinary identifiers/names. For example, ‘signal_name’ and ‘`signal_name’ are treated differently. He/she can define the macro multiple times and at the time of macro call, the latest definition is read by the compiler and is considered for that call.

SV macro is one of the most powerful features out there and if used properly with a thorough understanding and applied wisely in a DV project, it can help to save a lot of time and can make the code more readable and efficient.

About the author

Ronak Bhatt is a Verification Engineer at eInfochips. He has an
industry experience of 1.8 years in ASIC Design Verification and has
working experience in IP level and Chip level functional verification.
He has hands-on experience in Functional and SVA-based verification.

这篇关于SV中宏的用法总结(System Verilog Macro: A Powerful Feature for Design Verification Projects)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154185

相关文章

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除