Linux上将进程、线程与CPU核绑定

2023-10-06 14:36

本文主要是介绍Linux上将进程、线程与CPU核绑定,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      CPU亲和性(CPU Affinity)是某一进程(或线程)绑定到特定的CPU核(或CPU集合),从而使得该进程(或线程)只能运行在绑定的CPU核(或CPU集合)上。进程(或线程)本质上并不与CPU核绑定。每次进程(或线程)被调度执行时,它都可以由其关联列表中的任何CPU核执行。如果未显式设置关联列表,则进程(或线程)可以在任何CPU核上运行。

      一.查看CPU信息
      1.通过命令,执行:

cat /proc/cpuinfo

      (1).processor:指明每个物理CPU中逻辑处理器信息,序号从0开始;
      (2).cpu cores: 指明每个物理CPU中总核数;
      2.查看物理CPU个数,执行:

cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l

      3.查看每个物理CPU中core的个数(即核数),执行:

cat /proc/cpuinfo | grep "cpu cores" | uniq

      4.查看逻辑CPU的个数,执行:

cat /proc/cpuinfo | grep "processor" | wc -l

      5.通过代码:sysconf函数或get_nprocs函数

void get_cpu_cores()
{// _SC_NPROCESSORS_CONF:系统配置的CPU核心数量// _SC_NPROCESSORS_ONLN:当前系统实际可用的CPU核心数量,可能会因为系统的运行状态而变化// 两个函数返回的值可能并不完全相同std::cout << "cpu cores(_SC_NPROCESSORS_CONF): " << sysconf(_SC_NPROCESSORS_CONF) << "\n";std::cout << "cpu cores(_SC_NPROCESSORS_ONLN): " << sysconf(_SC_NPROCESSORS_ONLN) << "\n";// get_nprocs_conf:系统配置的CPU核心数量; get_nprocs:当前系统中可用的CPU核心数量,此值可能小于get_nprocs_conf返回的值std::cout << "cpu cores(get_nprocs_conf): " << get_nprocs_conf() << "\n";std::cout << "cpu cores(get_nprocs): " << get_nprocs() << "\n"; 
}

      二.将进程绑定到指定的CPU核上
      1.通过taskset:(-p:pid; -c:cpu list)
      (1).查看执行程序(进程)运行在哪个CPU核上:taskset -p 进程ID(PID, 操作系统分配给每个进程的唯一标识符)
      如查看gnome-shell运行在哪个CPU核上:通过top命令查看gnome-shell的PID为1246,输入:taskset -pc 1246 ,执行结果如下图所示:

      (2).启动时指定:CPU标号从0开始,绑定多个CPU核,之间用逗号分隔
    taskset -c CPU_标号 可执行程序
      (3).启动后绑定:CPU标号从0开始,绑定多个CPU核,之间用逗号分隔
    taskset -pc CPU_标号 PID
      2.通过代码:sched_setaffinity和sched_setaffinity函数
      (1).sched_setaffinity(pid_t pid, size_t cpusetsize, const cpu_set_t *mask): 将ID为pid的线程的CPU亲和性掩码(CPU affinity mask)设置为mask指定的值。如果pid为0,则使用调用线程。参数cpusetsize是 mask指向的数据的长度(以字节为单位)。通常该参数被指定为sizeof(cpu_set_t)。
      (2).sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask): 将ID为pid的线程的亲和性掩码写入mask指向的cpu_set_t结构中。cpusetsize参数指定掩码的大小(以字节为单位)。如果pid为零,则返回调用线程的掩码。

void set_processor_to_cpu_core()
{{ // sched_getaffinitycpu_set_t mask;CPU_ZERO(&mask);if (sched_getaffinity(0, sizeof(mask), &mask) != 0)std::cerr << "Error: fail to sched_getaffinity\n";for (auto i = 0; i < sysconf(_SC_NPROCESSORS_ONLN); ++i) {if (CPU_ISSET(i, &mask))std::cout << "CPU " << i << " is set\n";}
}{ // sched_setaffinitycpu_set_t mask;CPU_ZERO(&mask);// 可以多次调用CPU_SET,以指定将多个CPU核添加到mask中CPU_SET(0, &mask); // set affinity for core 0, set the bit that represents core 0if (sched_setaffinity(0, sizeof(mask), &mask) != 0)std::cerr << "Error: fail to sched_setaffinity\n";
}}

      三.将线程绑定到指定的CPU核上
      1.通过代码:pthread_setaffinity_np函数和pthread_getaffinity_np
      (1).pthread_setaffinity_np(pthread_t thread, size_t cpusetsize, const cpu_set_t *cpuset): 将线程thread的CPU亲和性掩码(CPU affinity mask)设置为cpuset指向的CPU集。如果调用成功,并且该线程当前未在cpuset中的某个CPU上运行,则它将迁移到这些CPU中的一个。
      (2).pthread_getaffinity_np(pthread_t thread, size_t cpusetsize, cpu_set_t *cpuset): 获取cpuset指向的缓冲区中线程thread的CPU亲和性掩码。

void get_thread_id(int n)
{std::cout << "thread id: " << std::this_thread::get_id() << ", on cpu: " << sched_getcpu() << "\n";std::this_thread::sleep_for(std::chrono::seconds(n));
}void set_thread_to_cpu_core()
{// 最大的硬件并发线程数std::cout << "Support concurrent threads: " << std::thread::hardware_concurrency() << "\n";std::thread th1(get_thread_id, 5), th2(get_thread_id, 5);
{ // pthread_getaffinity_npcpu_set_t cpuset;CPU_ZERO(&cpuset);if (pthread_getaffinity_np(th1.native_handle(), sizeof(cpuset), &cpuset) != 0)std::cerr << "Error: fail to pthread_getaffinity_np\n";// for (auto i = 0; i < sysconf(_SC_NPROCESSORS_ONLN); ++i) {//     if (CPU_ISSET(i, &cpuset))//         std::cout << "CPU " << i << " is set\n";// }
}{ // pthread_setaffinity_npcpu_set_t cpuset;CPU_ZERO(&cpuset);// 可以多次调用CPU_SET,以指定将多个CPU核添加到cpuset中CPU_SET(0, &cpuset); // set affinity for core 0, set the bit that represents core 0if (pthread_setaffinity_np(th2.native_handle(), sizeof(cpuset), &cpuset) != 0)std::cerr << "Error: fail to pthread_setaffinity_np\n";}th1.join();th2.join();
}

      以上测试代码执行结果如下图所示:虚拟机

      GitHub:https://github.com/fengbingchun/Linux_Code_Test

这篇关于Linux上将进程、线程与CPU核绑定的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/153286

相关文章

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

Linux镜像文件制作方式

《Linux镜像文件制作方式》本文介绍了Linux镜像文件制作的过程,包括确定磁盘空间布局、制作空白镜像文件、分区与格式化、复制引导分区和其他分区... 目录1.确定磁盘空间布局2.制作空白镜像文件3.分区与格式化1) 分区2) 格式化4.复制引导分区5.复制其它分区1) 挂载2) 复制bootfs分区3)

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

Linux下屏幕亮度的调节方式

《Linux下屏幕亮度的调节方式》文章介绍了Linux下屏幕亮度调节的几种方法,包括图形界面、手动调节(使用ACPI内核模块)和外接显示屏调节,以及自动调节软件(CaliseRedshift和Reds... 目录1 概述2 手动调节http://www.chinasem.cn2.1 手动屏幕调节2.2 外接显

Linux(centos7)虚拟机没有IP问题及解决方案

《Linux(centos7)虚拟机没有IP问题及解决方案》文章介绍了在CentOS7中配置虚拟机网络并使用Xshell连接虚拟机的步骤,首先,检查并配置网卡ens33的ONBOOT属性为yes,然后... 目录输入查看ZFhrxIP命令:ip addr查看,没有虚拟机IP修改ens33配置文件重启网络Xh

linux实现对.jar文件的配置文件进行修改

《linux实现对.jar文件的配置文件进行修改》文章讲述了如何使用Linux系统修改.jar文件的配置文件,包括进入文件夹、编辑文件、保存并退出编辑器,以及重新启动项目... 目录linux对.jar文件的配置文件进行修改第一步第二步 第三步第四步总结linux对.jar文件的配置文件进行修改第一步进

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

C++实现一个简易线程池的使用小结

《C++实现一个简易线程池的使用小结》在现代软件开发中,多线程编程已经成为提升程序性能的常见手段,本文主要介绍了C++实现一个简易线程池的使用小结,感兴趣的可以了解一下... 在现代软件开发中,多线程编程已经成为提升程序性能的常见手段。无论是处理大量 I/O 请求的服务器,还是进行 CPU 密集型计算的应用

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf