优化方法的应用(optimtool.example)

2023-10-06 01:39

本文主要是介绍优化方法的应用(optimtool.example),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import optimtool as oo
from optimtool.base import np, sp, plt
pip install optimtool>=2.4.2

优化方法的应用(optimtool.example)

import optimtool.example as oe

Lasso问题(Lasso)

oe.Lasso.[函数名]([矩阵A], [矩阵b], [因子mu], [参数表], [初始迭代点])

min ⁡ 1 2 ∣ ∣ A x − b ∣ ∣ 2 + μ ∣ ∣ x ∣ ∣ 1 \min \frac{1}{2} ||Ax-b||^2+\mu ||x||_1 min21∣∣Axb2+μ∣∣x1

给定 A m × n A_{m \times n} Am×n x n × 1 x_{n \times 1} xn×1 b m × 1 b_{m \times 1} bm×1,正则化常数 μ \mu μ。解决该无约束最优化问题,该问题目标函数一阶不可导。

方法头解释
gradient(A: NDArray, b: NDArray, mu: float, args: ArgArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, delta: float=10, alp: float=1e-3, epsilon: float=1e-2, k: int=0) -> OutputType光滑化Lasso函数法
subgradient(A: NDArray, b: NDArray, mu: float, args: ArgArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, alphak: float=2e-2, epsilon: float=1e-3, k: int=0) -> OutputType次梯度法Lasso避免一阶不可导
approximate_point(A: NDArray, b: NDArray, mu: float, args: ArgArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-4, k: int=0) -> OutputType邻近算子更新
import scipy.sparse as ss
x = sp.symbols('x1:9')
m, n = 4, 8
u = (ss.rand(n, 1, 0.1)).toarray()
Mu = 1e-3
A = np.random.randn(m, n)
b = np.random.randn(m, n).dot(u)
x_0 = tuple([1 for _ in range(8)])
oe.Lasso.subgradient(A, b, Mu, x, x_0, verbose=False)

在这里插入图片描述

(array([ 0.31938837, -0.01063285,  0.64248879,  0.39738588, -0.59341723, -0.20835098,  0.65554228,  0.44903602]), 216)

曲线相切问题(WanYuan)

oe.WanYuan.[函数名]([直线的斜率], [直线的截距], [二次项系数], [一次项系数], [常数项], [圆心横坐标], [圆心纵坐标], [初始迭代点])

问题描述:

给定直线的斜率和截距,给定一个抛物线函数的二次项系数,一次项系数与常数项。 要求解一个给定圆心的圆,该圆同时与抛物线、直线相切,若存在可行方案,请给出切点的坐标。
方法头解释
solution(m: float, n: float, a: float, b: float, c: float, x3: float, y3: float, x_0: tuple, verbose: bool=False, draw: bool=False, eps: float=1e-10) -> str使用高斯-牛顿方法求解构造的7个残差函数
oe.WanYuan.solution(1, 2, 0.2, -1.4, 2.2, 3, -2.5, (4, 4, -4, -2, -2, 4), True)
(4, 4, -4, -2, -2, 4)	61612.182500000024	0
[ 3.29133755  0.06740836 -2.5150997   0.28351846  1.0655889  -0.94429557]	13380.08160556542	1
[-1.11968963 -3.58590014 -2.69274677 -1.37736125 -0.26164182 -0.77291041]	1198.7999458909264	2
[-0.30266852 -2.89871252 -2.59053473 -0.61494902  1.62333363 -0.18803779]	1.5198302153861234	3
[-0.09044295 -2.47519749 -2.22330715 -0.34428703  1.67765088  0.02982181]	0.3269218137297747	4
[-0.04674173 -2.3650673  -2.16182829 -0.25144656  1.69657453  0.11211081]	0.23257960438227657	5
[ 0.00834682 -2.21605565 -2.09213868 -0.11631022  1.72502288  0.23298958]	0.1283472579162907	6
[ 0.04441602 -2.1008148  -2.06090762  0.00449731  1.7522343   0.34204307]	0.010358309290037107	7
[ 0.03898432 -2.11262103 -2.07069068 -0.00294621  1.75120302  0.33509119]	0.002797404047207694	8
[ 0.03915084 -2.11208603 -2.07046856 -0.00246663  1.75127154  0.33557915]	0.002796695858338408	9
[ 0.03914121 -2.11211464 -2.07048258 -0.00249084  1.75126809  0.33555454]	0.0027966954396675928	10
[ 0.03914172 -2.11211313 -2.07048185 -0.00248957  1.75126827  0.33555584]	0.0027966954385178202	11
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.0027966954385146964	12
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.0027966954385146483	13
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.002796695438514672	14
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.0027966954385146175	15

在这里插入图片描述

'(x0, y0)=(0.04, -2.11), (x1, y1)=(-2.07, -0.0), (x2, y2)=(1.75, 0.34)'

这篇关于优化方法的应用(optimtool.example)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/152526

相关文章

PyTorch核心方法之state_dict()、parameters()参数打印与应用案例

《PyTorch核心方法之state_dict()、parameters()参数打印与应用案例》PyTorch是一个流行的开源深度学习框架,提供了灵活且高效的方式来训练和部署神经网络,这篇文章主要介绍... 目录前言模型案例A. state_dict()方法验证B. parameters()C. 模型结构冻

Python字符串处理方法超全攻略

《Python字符串处理方法超全攻略》字符串可以看作多个字符的按照先后顺序组合,相当于就是序列结构,意味着可以对它进行遍历、切片,:本文主要介绍Python字符串处理方法的相关资料,文中通过代码介... 目录一、基础知识:字符串的“不可变”特性与创建方式二、常用操作:80%场景的“万能工具箱”三、格式化方法

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

自定义注解SpringBoot防重复提交AOP方法详解

《自定义注解SpringBoot防重复提交AOP方法详解》该文章描述了一个防止重复提交的流程,通过HttpServletRequest对象获取请求信息,生成唯一标识,使用Redis分布式锁判断请求是否... 目录防重复提交流程引入依赖properties配置自定义注解切面Redis工具类controller

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

Nginx 访问控制的多种方法

《Nginx访问控制的多种方法》本文系统介绍了Nginx实现Web访问控制的多种方法,包括IP黑白名单、路径/方法/参数控制、HTTP基本认证、防盗链机制、客户端证书校验、限速限流、地理位置控制等基... 目录一、IP 白名单与黑名单1. 允许/拒绝指定IP2. 全局黑名单二、基于路径、方法、参数的访问控制

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req