优化方法的应用(optimtool.example)

2023-10-06 01:39

本文主要是介绍优化方法的应用(optimtool.example),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import optimtool as oo
from optimtool.base import np, sp, plt
pip install optimtool>=2.4.2

优化方法的应用(optimtool.example)

import optimtool.example as oe

Lasso问题(Lasso)

oe.Lasso.[函数名]([矩阵A], [矩阵b], [因子mu], [参数表], [初始迭代点])

min ⁡ 1 2 ∣ ∣ A x − b ∣ ∣ 2 + μ ∣ ∣ x ∣ ∣ 1 \min \frac{1}{2} ||Ax-b||^2+\mu ||x||_1 min21∣∣Axb2+μ∣∣x1

给定 A m × n A_{m \times n} Am×n x n × 1 x_{n \times 1} xn×1 b m × 1 b_{m \times 1} bm×1,正则化常数 μ \mu μ。解决该无约束最优化问题,该问题目标函数一阶不可导。

方法头解释
gradient(A: NDArray, b: NDArray, mu: float, args: ArgArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, delta: float=10, alp: float=1e-3, epsilon: float=1e-2, k: int=0) -> OutputType光滑化Lasso函数法
subgradient(A: NDArray, b: NDArray, mu: float, args: ArgArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, alphak: float=2e-2, epsilon: float=1e-3, k: int=0) -> OutputType次梯度法Lasso避免一阶不可导
approximate_point(A: NDArray, b: NDArray, mu: float, args: ArgArray, x_0: PointArray, verbose: bool=False, draw: bool=True, output_f: bool=False, epsilon: float=1e-4, k: int=0) -> OutputType邻近算子更新
import scipy.sparse as ss
x = sp.symbols('x1:9')
m, n = 4, 8
u = (ss.rand(n, 1, 0.1)).toarray()
Mu = 1e-3
A = np.random.randn(m, n)
b = np.random.randn(m, n).dot(u)
x_0 = tuple([1 for _ in range(8)])
oe.Lasso.subgradient(A, b, Mu, x, x_0, verbose=False)

在这里插入图片描述

(array([ 0.31938837, -0.01063285,  0.64248879,  0.39738588, -0.59341723, -0.20835098,  0.65554228,  0.44903602]), 216)

曲线相切问题(WanYuan)

oe.WanYuan.[函数名]([直线的斜率], [直线的截距], [二次项系数], [一次项系数], [常数项], [圆心横坐标], [圆心纵坐标], [初始迭代点])

问题描述:

给定直线的斜率和截距,给定一个抛物线函数的二次项系数,一次项系数与常数项。 要求解一个给定圆心的圆,该圆同时与抛物线、直线相切,若存在可行方案,请给出切点的坐标。
方法头解释
solution(m: float, n: float, a: float, b: float, c: float, x3: float, y3: float, x_0: tuple, verbose: bool=False, draw: bool=False, eps: float=1e-10) -> str使用高斯-牛顿方法求解构造的7个残差函数
oe.WanYuan.solution(1, 2, 0.2, -1.4, 2.2, 3, -2.5, (4, 4, -4, -2, -2, 4), True)
(4, 4, -4, -2, -2, 4)	61612.182500000024	0
[ 3.29133755  0.06740836 -2.5150997   0.28351846  1.0655889  -0.94429557]	13380.08160556542	1
[-1.11968963 -3.58590014 -2.69274677 -1.37736125 -0.26164182 -0.77291041]	1198.7999458909264	2
[-0.30266852 -2.89871252 -2.59053473 -0.61494902  1.62333363 -0.18803779]	1.5198302153861234	3
[-0.09044295 -2.47519749 -2.22330715 -0.34428703  1.67765088  0.02982181]	0.3269218137297747	4
[-0.04674173 -2.3650673  -2.16182829 -0.25144656  1.69657453  0.11211081]	0.23257960438227657	5
[ 0.00834682 -2.21605565 -2.09213868 -0.11631022  1.72502288  0.23298958]	0.1283472579162907	6
[ 0.04441602 -2.1008148  -2.06090762  0.00449731  1.7522343   0.34204307]	0.010358309290037107	7
[ 0.03898432 -2.11262103 -2.07069068 -0.00294621  1.75120302  0.33509119]	0.002797404047207694	8
[ 0.03915084 -2.11208603 -2.07046856 -0.00246663  1.75127154  0.33557915]	0.002796695858338408	9
[ 0.03914121 -2.11211464 -2.07048258 -0.00249084  1.75126809  0.33555454]	0.0027966954396675928	10
[ 0.03914172 -2.11211313 -2.07048185 -0.00248957  1.75126827  0.33555584]	0.0027966954385178202	11
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.0027966954385146964	12
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.0027966954385146483	13
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.002796695438514672	14
[ 0.03914169 -2.11211321 -2.07048189 -0.00248963  1.75126826  0.33555577]	0.0027966954385146175	15

在这里插入图片描述

'(x0, y0)=(0.04, -2.11), (x1, y1)=(-2.07, -0.0), (x2, y2)=(1.75, 0.34)'

这篇关于优化方法的应用(optimtool.example)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/152526

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

在Linux终端中统计非二进制文件行数的实现方法

《在Linux终端中统计非二进制文件行数的实现方法》在Linux系统中,有时需要统计非二进制文件(如CSV、TXT文件)的行数,而不希望手动打开文件进行查看,例如,在处理大型日志文件、数据文件时,了解... 目录在linux终端中统计非二进制文件的行数技术背景实现步骤1. 使用wc命令2. 使用grep命令