HDU5135 Little Zu Chongzhi's Triangles(计算几何,枚举)

2023-10-06 00:19

本文主要是介绍HDU5135 Little Zu Chongzhi's Triangles(计算几何,枚举),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:

Little Zu Chongzhi's Triangles

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)
Total Submission(s): 1901    Accepted Submission(s): 1083


Problem Description
Zu Chongzhi (429–500) was a prominent Chinese mathematician and astronomer during the Liu Song and Southern Qi Dynasties. Zu calculated the value ofπ to the precision of six decimal places and for a thousand years thereafter no subsequent mathematician computed a value this precise. Zu calculated one year as 365.24281481 days, which is very close to 365.24219878 days as we know today. He also worked on deducing the formula for the volume of a sphere. 

It is said in some legend story books that when Zu was a little boy, he liked mathematical games. One day, his father gave him some wood sticks as toys. Zu Chongzhi found a interesting problem using them. He wanted to make some triangles by those sticks, and he wanted the total area of all triangles he made to be as large as possible. The rules were :

1) A triangle could only consist of 3 sticks.
2) A triangle's vertexes must be end points of sticks. A triangle's vertex couldn't be in the middle of a stick.
3) Zu didn't have to use all sticks.

Unfortunately, Zu didn't solve that problem because it was an algorithm problem rather than a mathematical problem. You can't solve that problem without a computer if there are too many sticks. So please bring your computer and go back to Zu's time to help him so that maybe you can change the history.

Input
There are no more than 10 test cases. For each case:

The first line is an integer N(3 <= N<= 12), indicating the number of sticks Zu Chongzhi had got. The second line contains N integers, meaning the length of N sticks. The length of a stick is no more than 100. The input ends with N = 0.

Output
For each test case, output the maximum total area of triangles Zu could make. Round the result to 2 digits after decimal point. If Zu couldn't make any triangle, print 0.00 .

Sample Input
  
3 1 1 20 7 3 4 5 3 4 5 90 0

Sample Output
  
0.00 13.64

Source
2014ACM/ICPC亚洲区广州站-重现赛(感谢华工和北大)

Recommend
liuyiding   |   We have carefully selected several similar problems for you:   6022  6021  6020  6019  6018 

Statistic |  Submit |  Discuss |  Note
思路:
有n个数,接下来有n个小木棍,要把它尽量围成多个三角形,并且使,围成的三角形的面积最大。

需要满足三个条件:

①三角形只能有三根棒组成

②三角形的顶点必须是棒的终点

③木棍不能用完

先按照贪心的思路给边排序,然后在枚举

代码:

#include <cstdio>
#include <cstring>
#include <cctype>
#include <string>
#include <set>
#include <iostream>
#include <stack>
#include <cmath>
#include <queue>
#include <vector>
#include <algorithm>
#define mem(a,b) memset(a,b,sizeof(a))
#define inf 0x3f3f3f3f
#define mod 10000007
#define debug() puts("what the fuck!!!")
#define N 100
#define M 1000000
#define ll long long
using namespace std;
struct node
{double l;int vis;
} a[N];
int cmp(node a,node b)
{return a.l>b.l;
}
double mj(double a,double b,double c)
{double p=(a+b+c)/2;return sqrt(p*(p-a)*(p-b)*(p-c));
}
int jc(double a,double b,double c)
{if(a+b>c&&a+c>b&&b+c>a)return 1;elsereturn 0;
}
int main()
{int n;while(scanf("%d",&n)&&n){for(int i=1; i<=n; i++){scanf("%lf",&a[i].l);a[i].vis=0;}sort(a+1,a+n+1,cmp);double num=0.0;int flag;for(int i=1; i<=n; i++){flag=0;if(a[i].vis==0&&flag==0){for(int j=i+1; j<=n; j++){if(a[j].vis==0&&flag==0){for(int k=j+1; k<=n; k++){if(a[k].vis==0&&flag==0){if(jc(a[i].l,a[j].l,a[k].l)){//debug();num+=mj(a[i].l,a[j].l,a[k].l);a[i].vis=1;a[j].vis=1;a[k].vis=1;flag=1;break;}}}}}}}printf("%.2lf\n",num);}return 0;
}


这篇关于HDU5135 Little Zu Chongzhi's Triangles(计算几何,枚举)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/152377

相关文章

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如