一个函数分析(s3c2410_gpio_setpin),浅析ARM GPIO地址转换

2023-10-05 16:59

本文主要是介绍一个函数分析(s3c2410_gpio_setpin),浅析ARM GPIO地址转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一个函数分析(s3c2410_gpio_setpin),浅析ARM GPIO地址转换  

http://blog.163.com/ruoshui723

目录:

1 S3c2410_gpio_setpin作用以及源码
2 在内核中队部分代码进行深入跟踪
3 ARMIO内存映射计算及分析
4 一些琐碎的话
1  S3c2410_gpio_setpin作用以及源码
该函数根据传入的参数设这GPIO的数据输出。源码如下
void s3c2410_gpio_setpin(unsigned int pin, unsigned int to)
{
       void __iomem *base = S3C24XX_GPIO_BASE(pin);
       unsigned long offs = S3C2410_GPIO_OFFSET(pin);
       unsigned long flags;
       unsigned long dat;
       local_irq_save(flags);
       dat = __raw_readl(base + 0x04);
       dat &= ~(1<< offs);
       dat |= to << offs;
       __raw_writel(dat, base + 0x04);
       local_irq_restore(flags);
}
EXPORT_SYMBOL(s3c2410_gpio_setpin);
在内核中队部分代码进行深入跟踪
S3C24XX_GPIO_BASE的定义如下
#define S3C24XX_GPIO_BASE(x)  S3C2400_GPIO_BASE(x)
#define S3C2400_GPIO_BASE(pin)   (pin < S3C2410_GPIO_BANKC ? \
                                 S3C2400_BASEA2B(pin)+S3C24XX_VA_GPIO : \
                                 S3C2400_BASEC2H(pin)+S3C24XX_VA_GPIO)
#define S3C2410_GPIO_BANKC   (32*2)
#define S3C2400_BASEA2B(pin)     ((((pin) & ~31) >> 2))
#define S3C2400_BASEC2H(pin)     ((S3C2400_BANKNUM(pin) * 10) + \
                                 (2 * (S3C2400_BANKNUM(pin)-2)))
#define S3C2400_BANKNUM(pin)     (((pin) & ~31) / 32)
#define S3C24XX_VA_GPIO         ((S3C24XX_PA_GPIO-S3C24XX_PA_UART)+S3C24XX_VA_UART)
#define S3C24XX_PA_GPIO     S3C2410_PA_GPIO
#define S3C2410_PA_GPIO     (0x56000000)
#define S3C2410_PA_UART    (0x50000000)
#define S3C24XX_VA_UART         S3C_VA_UART
#define S3C_VA_UART  S3C_ADDR(0x01000000)      /* UART */
#ifndef __ASSEMBLY__
#define S3C_ADDR(x)    ((void __iomem __force *)S3C_ADDR_BASE + (x))
#else
#define S3C_ADDR(x)    (S3C_ADDR_BASE + (x))
#endif
#define S3C_ADDR_BASE   (0xF4000000)
以上就是用cscope跟踪内核代码的结果。
3  ARMIO内存映射计算及分析
UART映射后的虚拟地址是0xF40000000x01000000,而物理地址GPIO0x56000000 UART=0x50000000,void __iomem *base = S3C24XX_GPIO_BASE(pin)中的base是通过UART的虚拟地址加上GPIOUART 的差,进而计算出GPIO的虚拟地址S3C24XX_VA_GPIO((S3C24XX_PA_GPIO - S3C24XX_PA_UART)+S3C24XX_VA_UART=0x56000000-0x50000000+S3C24XX_VA_UART=0x060000000+(0xf4000000+0x01000000)=0xfb000000,
所以AGPIO的基地址为 0xfb000000 B组的基地址为:0xfb000000+(0b100000>>1)=0xfb000010 , S3C24XX_GPIO_BASE=0xfb000010C组基地址为 2102*(22)+0xfb000000=0b10100+0xfb000000=0x14+0xfb000000=0xfb000014,DEFGH这些组可以类推,如D组比C组基地址大12E组比D组基地址大12……
 S3C2410_GPIO_OFFSET的定义如下:
#define S3C2410_GPIO_OFFSET(pin) ((pin) & 31)
可知GPB5)的偏移量就是5对应GPBCON   的第五位,对应控制断口的第五位。
而在硬件手册上找到ARM920TGPIO物理地址:
GPACON 0x56000000    GPADAT 0x56000004     Ox56000008 0x5600000c 这两个地址保留
PGBCON 0x56000010    GPBDAT 0x56000014     GPBUP 0x56000018 Reserved 0x5600001c
PGCCON 0x56000020    GPCDAT 0x56000024     GPCUP 0x56000028 Reserved 0x5600002c     
由此可知道S3C24XX_GPIO_BASE=0xfb000010就是GPBCON的地址,S3C24XX_GPIO_BASE0x04=base+0x04)就是GPBDAT的地址,所以下面语句就是向从GPBDAT读数据到dat,经过修改之后(根据穿过来的参数,设置对应位,这里是GPB5),也就是修改GPBDAT中的第五位)再次写入GPBDAT
       dat = __raw_readl(base + 0x04);
       dat &= ~(1<< offs);
       dat |= to << offs;
       __raw_writel(dat, base + 0x04);
       以上IO物理地址映射为虚拟地址的过程就是ARM IO 地址映射的过程
local_irq_save(flags);是关中断
local_irq_restore(flags);是开中断
一些琐碎的话
Documents/arm/s3c24xx中有关于s3c24xxcpu的一些文档,很好,可以看看。比如有关gpio的文档。
GPIO 在使用的时候首先是对所有的GPIO 进行了分类A B C D E F G H J 这几大类,每一类都有32GPIO,
在逻辑上对他们进行了地址的规划,地址是从0(还是1?有待细看)一直到32*9 这么多地址,
这些地址进而又与虚拟地址相对应,linux中端口的地址都是把对应的物理地址加一个偏移量形成了物理地址,
这个偏移量从0xf4000000 开始的,然后再以0xf4000000为基地址进行映射(那些编号就是相对从0xf4000000开始映射的GPIO地址的偏移地址)。这样就从CPU引脚的物理地址变换成了虚拟地址。
新手,如有错误不要吝惜您的数次按键,请批评指正。如有意见建议谢谢点拨。

这篇关于一个函数分析(s3c2410_gpio_setpin),浅析ARM GPIO地址转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/151625

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java轻松实现PDF转换为PDF/A的示例代码

《Java轻松实现PDF转换为PDF/A的示例代码》本文将深入探讨Java环境下,如何利用专业工具将PDF转换为PDF/A格式,为数字文档的永续保存提供可靠方案,文中的示例代码讲解详细,感兴趣的小伙伴... 目录为什么需要将PDF转换为PDF/A使用Spire.PDF for Java进行转换前的准备通过