golang中slice扩容的具体实现

2025-05-23 15:50

本文主要是介绍golang中slice扩容的具体实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《golang中slice扩容的具体实现》Go语言中的切片扩容机制是Go运行时的一个关键部分,它确保切片在动态增加元素时能够高效地管理内存,本文主要介绍了golang中slice扩容的具体实现,感兴趣...

Go 语言中的切片扩容机制是 Go 运行时的一个关键部分,它确保切片在动态增加元素时能够高效地管理内存。这个机制是在 Go 运行时内部实现的,涉及了内存分配、数据拷贝和容量调整。扩容的实现主要体现在 runtime.growslice 函数中。下面我们将深入分析 Go 切片的扩容机制,结合源码来进行详细解答。

1. 切片扩容的触发

切片是 Go 中的一种动态数组,它有 长度(len) 和 容量(cap)。当我们向切片添加元素时,切片的长度会增加。如果长度超出了当前的容量,Go 会自动扩容。切片扩容的过程是通过 append 函数来触发的。

apChina编程pend 函数的实现

append 函数是 Go 内置的函数,用于向切片追加元素。它的实现会首先检查当前切片的容量是否足够容纳新的元素,如果不够,它会调用 runtime.growslice 函数来扩容。

// append() 源码简化版
func append(slice []T, elems ...T) []T {
    // 1. 检查当前切片是否有足够的容量
    if len(slice)+len(elems) <= cap(slice) {
        // 如果容量足够,直接追加元素
        slice = slice[:len(slice)+len(elems)]
        copy(slice[len(slice)-len(elems):], elems)
        return slice
    }
    // 2. 如果容量不足,进行扩容
    return growslice(reflect.TypeOf(slice).Elem(), slice, len(slice)+len(elems))
}
China编程

2. runtime.growslice 函数

当切片容量不足时,append 会调用 growslice 函数来扩容。growslice 函数是 Go 运行时内部函数,负责实际的内存分配和切片扩容操作。

growslice 函数源码

// growslice 扩容的实现
func growslice(et *_type, old slice, cap int) slice {
    if cap < old.cap {
        panic("growslice: cap out of range")
    }

    // 如果元素大小为 0,直接返回新的切片
    if et.size == 0 {
        return slice{unsafe.Pointer(&zerobase), old.len, cap}
    }

    // 扩容策略:根据当前容量和预期的新容量来决定新容量
    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        const threshold = 256
        if old.cap < threshold {
            newcap = doublecap
        } else {
            for 0 < newcap && newcap < cap {
                newcap += (newcap + 3*threshold) / 4
            }
            if newcap <= 0 {
                newcap = cap
            }
        }
    }

    // 根据扩容后的容量计算所需的内存空间
    var lenmem, newlenmem, capmem uintptr
    switch {
    case et.size == 1:
        lenmem = uintptr(old.len)
        newlenmem = uintptr(cap)
        capmem = roundupsize(uintptr(newcap))
        newcap = int(capmem)
    pythoncase et.size == goarch.PtrSize:
        lenmem = uintptr(old.len) * goarch.PtrSize
        newlenmem = uintptr(cap) * goarch.PtrSize
        capmem = roundupsize(uintptr(newcap) * goarch.PtrSize)
        newcap = int(capmem / goarch.PtrSize)
    case isPowerOfTwo(et.size):
        var shift uintptr
        if goarch.PtrSize == 8 {
            shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
        } else {
            shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
        }
        lenmem = uintptr(old.len) << sjavascripthift
        newlenmem = uintptr(cap) << shift
        capmem = roundupsize(uintptr(newcap) << shift)
        newcap = int(capmem >> shift)
    default:
        lenmem = uintptr(old.len) * et.size
        newlenmem = uintptr(cap) * et.size
        capmem, _ = math.MulUintptr(et.size, uintptr(newcap))
        capmem = roundupsize(capmem)
        newcap = int(capmem / et.size)
    }

    // 分配新的内存,并拷贝旧的数据
    var p unsafe.Pointer
    if et.ptrdata == 0 {
        p = mallocgc(capmem, nil, false)
    } else {
        p = mallocgc(capmem, et, true)
    }

    memmove(p, old.array, lenmem)
    return slice{p, old.len, newcap}
}

3. 扩容的具体过程

  • 检查容量是否足够: growslice 首先会检查请求的扩容是否超过了当前切片的容量。如果新容量大于原容量的两倍,它会直接使用新容量作为目标容量。

  • 根据扩容策略计算新容量:

    • 如果切片的容量小于 256,它会直接翻倍容量(newcap = cap)。

    •  如果切片容量较大,扩容时会采取逐步增加的策略:按原容量的 1.25 倍+192 (也就是3*threshold / 4) 增长,直到满足目标容量。

  • 计算内存所需大小: growslice 会计算新切片所需的内存大小,并分配新的内存空间。对于不同类型的元素(如基本类型、指针类型等),内存分配的方式会有所不同。

  • 内存分配和数据拷贝:

    • 通过 mallocgc 分配新的内存区域,在分配空间的时候因根据标签的大小等级会向上取整,go在扩容的时候宁愿牺牲一部分内部碎片也要保证外部尽可能少的外部碎片,并使用 memmove 将原切片的数据拷贝到新的内存中。

    • 扩容后的切片会更新 指针(指向新的内存)、长度 和 容量,然后返回新的切片。

4. 扩容的性能考虑

切片扩容的过程需要进行 内存分配 和 数据拷贝,这会影响性能,尤其是在频繁扩容的场景中。

  • 频繁扩容的开销:每次扩容时,都会重新分配内存并将数据拷贝到新的内存区域,这会带来额外的时间和空间开销。

  • 容量预估:为了避免频繁扩容,最好在创建切片时预估切片需要的容量,尤其是在元素数量已知的情况下。可以使用 make([]T, 0, n) 来预分配一个足够的容量,以减少扩容操作。

5. 扩容策略的总结

  • 小容量时(比如容量小于 256),切片会按 2 倍扩容。

  • 大容量时,Go 会使用 javascript;1.25 倍扩容 + 192 的策略,确保不会过度浪费内存。

  • 对于 nil 或零容量切片,growslice 会初始化并分配合适的容量。

6. 示例:切片扩容过程

下面是一个示例,展示了切片扩容的过程:

package main

import "fmt"

func main() {
    var slice []int
    for i := 0; i < 10; i++ {
        slice = append(slice, i)
        fmt.Printf("Length: %d, Capacity: %d, Slice: %v\n", len(slice), cap(slice), slice)
    }
}

输出示例:

Length: 1, Capacity: 1, Slice: [0]
Length: 2, Capacity: 2, Slice: [0 1]
Length: 3, Capacity: 4, Slice: [0 1 2]
Length: 4, Capacity: 4, Slice: [0 1 2 3]
Length: 5, Capacity: 8, Slice: [0 1 2 3 4]
Length: 6, Capacity: 8, Slice: [0 1 2 3 4 5]
Length: 7, Capacity: 8, Slice: [0 1 2 3 4 5 6]
Length: 8, Capacity: 8, Slice: [0 1 2 3 4 5 6 7]
Length: 9, Capacity: 16, Slice: [0 1 2 3 4 5 6 7 8]
Length: 10, Capacity: 16, Slice: [0 1 2 3 4 5 6 7 8 9]

如上所示,切片的容量在每次添加元素时会根据扩容策略进行增长。初始容量为 1,当容量不足时,扩容后容量翻倍。最终,容量达到 16。

总结

Go 的切片扩容机制是通过 append 函数和 growslice 函数实现的。在扩容时,Go 会根据当前切片的容量和预期的容量进行计算,并分配新的内存空间,拷贝原有数据。扩容的策略通常是小容量时翻倍,大容量时逐步增加,保证了内存的高效使用。

到此这篇关于golang中slice扩容的具体实现的文章就介绍到这了,更多相关golang slice扩容内容请搜索编程China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于golang中slice扩容的具体实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154754

相关文章

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Golang interface{}的具体使用

《Golanginterface{}的具体使用》interface{}是Go中可以表示任意类型的空接口,本文主要介绍了Golanginterface{}的具体使用,具有一定的参考价值,感兴趣的可以了... 目录一、什么是 interface{}?定义形China编程式:二、interface{} 有什么特别的?✅

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal

C#使用MQTTnet实现服务端与客户端的通讯的示例

《C#使用MQTTnet实现服务端与客户端的通讯的示例》本文主要介绍了C#使用MQTTnet实现服务端与客户端的通讯的示例,包括协议特性、连接管理、QoS机制和安全策略,具有一定的参考价值,感兴趣的可... 目录一、MQTT 协议简介二、MQTT 协议核心特性三、MQTTNET 库的核心功能四、服务端(BR

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软