Python 交互式可视化的利器Bokeh的使用

2025-04-27 17:50

本文主要是介绍Python 交互式可视化的利器Bokeh的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感...

1. Bokeh 简介

Bokeh 是一个专注于 Web 端交互式数据可视化的 python 库。它基于 JavaScript 的 Bokehjs 进行渲染,使得生成的图表可以直接嵌入 html,并支持交互操作。与 Matplotlib、Seaborn 等传统静态绘图库相比,Bokeh 在处理大规模数据和交互性方面具有明显优势。

1.1 为什么选择 Bokeh

  • 交互性强:支持缩放、平移、悬停提示等交互功能。
  • 高效渲染:利用 WebGL 提高大规模数据集的绘图性能。
  • 与 Pandas 兼容:可以直接处理 DataFrame 数据。
  • 易于嵌入:可将可视化结果嵌入 H编程TML、Flask、Django 和 Jupyter Notebook。

1.2 安装与环境配置

安装 Bokeh 非常简单,可以通过 pip 直接安装:

pip install bokeh

安装后,可以在 Python 环境中测试:

from bokeh.plotting import figure, show
from bokeh.io import output_file

output_file("test.html")  # 生成 HTML 文件
p = figure(title="示例图", x_axis_label="X 轴", y_axis_label="Y 轴")
p.line([1, 2, 3, 4], [10, 20, 30, 40], line_width=2)
show(p)  # 在浏览器中显示图表

运行代码后,会在默认浏览器中打开一个 HTML 页面,显示简单的折线图。

2. Bokeh 基础

Bokeh 的核心概念主要包括:

  • figure:绘图区域,用于创建图表。
  • glyph:可视化图元,如线、点、柱状图等。
  • ColumnDataSource:数据源,便于管理数据和交互。
  • output_file/output_notebook:指定输出方式。
  • show/save:显示或保存图表。

2.1 创建基本绘图

Bokeh 提供了多种基础图表类型,包括折线图、散点图、条形图等。以下是一些常见示例。

2.1.1 折线图

from bokeh.plotting import figure, show

p = figure(title="折线图示例", x_axis_label="X", y_axis_label="Y")
p.line([1, 2, 3, 4, 5], [5, 7, 2, 3, 6], line_width=2, color="blue")
show(p)

2.1.2 散点图

p = figure(title="散点图示例", x_axis_label="X", y_axis_label="Y")
p.circwww.chinasem.cnle([1, 2, 3, 4, 5], [5, 7, 2, 3, 6], size=10, color="red", alpha=0.5)
show(p)

2.1.3 柱状图

from bokeh.io import show
from bokeh.plotting import figure
from bokeh.transform import factor_cmap
from bokeh.models import ColumnDataSource

fruits = ["苹果", "香蕉", "橙子", "葡萄"]
values = [10, 20, 15, 30]

source = ColumnDataSource(data=dict(fruits=fruits, values=values))
p = figure(x_range=fruits, title="水果销量", toolbar_location=None, tools="")
p.vbar(x="fruits", top="values", width=0.4, source=source)
show(p)

3. 交互式功能

Bokeh 的一大亮点是交互式可视化,主要通过 HoverToolTapToolBoxSelectTool 等工具实现。

3.1 鼠标悬停显示数据

from bokeh.models import HoverTool

p = figure(title="悬停提示示例", x_axis_label="X", y_axis_label="Y")
p.circle([1, 2, 3, 4], [10, 20, 30www.chinasem.cn, 40], size=10, color="navy", alpha=0.5)

hover = HoverTool(tooltips=[("X 轴", "$x"), ("Y 轴", "$y")])
p.add_tools(hover)
show(p)

3.2 选择和缩放

p = figure(title="选择和缩放示例", tools="box_select,pan,wheel_zoom,reset")
p.circle([1, 2, 3, 4], [10, 20, 30, 40], size=10, color="green", alpha=0.5)
show(p)

4. 数据流处理

Bokeh 支持动态数据更新,适用于实时数据可视化,如传感器数据、股票市场数据等。

4.1 动态数据更新

from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, curdoc
import numpy as np

source = ColumnDataSource(data=dict(x=[], y=[]))
p = figure(title="动态数据流", x_axis_label="X", y_axis_label="Y")
p.line("x", "y", source=source, line_width=2)

def update():
    new_data = dict(x=[np.random.random()], y=[np.random.random()])
    source.stream(new_data, rollover=50)

curdoc().add_root(p)
curdoc().add_periodic_callback(update, 1000)  # 每秒更新一次

运行该代码时,Bokeh 服务器会持续更新数据,并在浏览器中实时展示曲线变化。

5. Bokeh 与 Pandas、Flask/Django 集成

Bokeh 可以与 Pandaswww.chinasem.cn 结合处理数据,并与 Flask 或 Django 进行 Web 应用集成。

5.1 Bokeh + Pandas

import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]})
source = ColumnDataSource(data)

p = figure(title="Pandas 数据绘图")
p.line("x", "y", source=source, line_width=2)
show(p)

5.2 Bokeh + Flask

from flask import Flask, render_template
from bokeh.embed import components

app = Flask(__name__)

@app.route("/")
def index():
    p = figure(title="Flask 集成示例")
    p.line([1, 2, 3, 4], [10, 20, 30, 40])
    script, div = components(p)
    return render_template("index.html", script=script, div=div)

if __name__ == "__main__":
    app.run(debug=True)

6. 总结

Bokeh 是 Python 生态中最强大的交互式可视化工具之一,适android用于大规模数据、Web 嵌入和动态数据流可视化。它的灵活性、易用性和强大的交互能力,使其成为数据科学、金融分析、物联网数据可视化的理想选择。

到此这篇关于Python 交互式可视化的利器Bokeh的使用的文章就介绍到这了,更多相关Python Bokeh内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python 交互式可视化的利器Bokeh的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154396

相关文章

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam