Python 交互式可视化的利器Bokeh的使用

2025-04-27 17:50

本文主要是介绍Python 交互式可视化的利器Bokeh的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感...

1. Bokeh 简介

Bokeh 是一个专注于 Web 端交互式数据可视化的 python 库。它基于 JavaScript 的 Bokehjs 进行渲染,使得生成的图表可以直接嵌入 html,并支持交互操作。与 Matplotlib、Seaborn 等传统静态绘图库相比,Bokeh 在处理大规模数据和交互性方面具有明显优势。

1.1 为什么选择 Bokeh

  • 交互性强:支持缩放、平移、悬停提示等交互功能。
  • 高效渲染:利用 WebGL 提高大规模数据集的绘图性能。
  • 与 Pandas 兼容:可以直接处理 DataFrame 数据。
  • 易于嵌入:可将可视化结果嵌入 H编程TML、Flask、Django 和 Jupyter Notebook。

1.2 安装与环境配置

安装 Bokeh 非常简单,可以通过 pip 直接安装:

pip install bokeh

安装后,可以在 Python 环境中测试:

from bokeh.plotting import figure, show
from bokeh.io import output_file

output_file("test.html")  # 生成 HTML 文件
p = figure(title="示例图", x_axis_label="X 轴", y_axis_label="Y 轴")
p.line([1, 2, 3, 4], [10, 20, 30, 40], line_width=2)
show(p)  # 在浏览器中显示图表

运行代码后,会在默认浏览器中打开一个 HTML 页面,显示简单的折线图。

2. Bokeh 基础

Bokeh 的核心概念主要包括:

  • figure:绘图区域,用于创建图表。
  • glyph:可视化图元,如线、点、柱状图等。
  • ColumnDataSource:数据源,便于管理数据和交互。
  • output_file/output_notebook:指定输出方式。
  • show/save:显示或保存图表。

2.1 创建基本绘图

Bokeh 提供了多种基础图表类型,包括折线图、散点图、条形图等。以下是一些常见示例。

2.1.1 折线图

from bokeh.plotting import figure, show

p = figure(title="折线图示例", x_axis_label="X", y_axis_label="Y")
p.line([1, 2, 3, 4, 5], [5, 7, 2, 3, 6], line_width=2, color="blue")
show(p)

2.1.2 散点图

p = figure(title="散点图示例", x_axis_label="X", y_axis_label="Y")
p.circwww.chinasem.cnle([1, 2, 3, 4, 5], [5, 7, 2, 3, 6], size=10, color="red", alpha=0.5)
show(p)

2.1.3 柱状图

from bokeh.io import show
from bokeh.plotting import figure
from bokeh.transform import factor_cmap
from bokeh.models import ColumnDataSource

fruits = ["苹果", "香蕉", "橙子", "葡萄"]
values = [10, 20, 15, 30]

source = ColumnDataSource(data=dict(fruits=fruits, values=values))
p = figure(x_range=fruits, title="水果销量", toolbar_location=None, tools="")
p.vbar(x="fruits", top="values", width=0.4, source=source)
show(p)

3. 交互式功能

Bokeh 的一大亮点是交互式可视化,主要通过 HoverToolTapToolBoxSelectTool 等工具实现。

3.1 鼠标悬停显示数据

from bokeh.models import HoverTool

p = figure(title="悬停提示示例", x_axis_label="X", y_axis_label="Y")
p.circle([1, 2, 3, 4], [10, 20, 30www.chinasem.cn, 40], size=10, color="navy", alpha=0.5)

hover = HoverTool(tooltips=[("X 轴", "$x"), ("Y 轴", "$y")])
p.add_tools(hover)
show(p)

3.2 选择和缩放

p = figure(title="选择和缩放示例", tools="box_select,pan,wheel_zoom,reset")
p.circle([1, 2, 3, 4], [10, 20, 30, 40], size=10, color="green", alpha=0.5)
show(p)

4. 数据流处理

Bokeh 支持动态数据更新,适用于实时数据可视化,如传感器数据、股票市场数据等。

4.1 动态数据更新

from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, curdoc
import numpy as np

source = ColumnDataSource(data=dict(x=[], y=[]))
p = figure(title="动态数据流", x_axis_label="X", y_axis_label="Y")
p.line("x", "y", source=source, line_width=2)

def update():
    new_data = dict(x=[np.random.random()], y=[np.random.random()])
    source.stream(new_data, rollover=50)

curdoc().add_root(p)
curdoc().add_periodic_callback(update, 1000)  # 每秒更新一次

运行该代码时,Bokeh 服务器会持续更新数据,并在浏览器中实时展示曲线变化。

5. Bokeh 与 Pandas、Flask/Django 集成

Bokeh 可以与 Pandaswww.chinasem.cn 结合处理数据,并与 Flask 或 Django 进行 Web 应用集成。

5.1 Bokeh + Pandas

import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]})
source = ColumnDataSource(data)

p = figure(title="Pandas 数据绘图")
p.line("x", "y", source=source, line_width=2)
show(p)

5.2 Bokeh + Flask

from flask import Flask, render_template
from bokeh.embed import components

app = Flask(__name__)

@app.route("/")
def index():
    p = figure(title="Flask 集成示例")
    p.line([1, 2, 3, 4], [10, 20, 30, 40])
    script, div = components(p)
    return render_template("index.html", script=script, div=div)

if __name__ == "__main__":
    app.run(debug=True)

6. 总结

Bokeh 是 Python 生态中最强大的交互式可视化工具之一,适android用于大规模数据、Web 嵌入和动态数据流可视化。它的灵活性、易用性和强大的交互能力,使其成为数据科学、金融分析、物联网数据可视化的理想选择。

到此这篇关于Python 交互式可视化的利器Bokeh的使用的文章就介绍到这了,更多相关Python Bokeh内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python 交互式可视化的利器Bokeh的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154396

相关文章

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

Python中CSV文件处理全攻略

《Python中CSV文件处理全攻略》在数据处理和存储领域,CSV格式凭借其简单高效的特性,成为了电子表格和数据库中常用的文件格式,Python的csv模块为操作CSV文件提供了强大的支持,本文将深入... 目录一、CSV 格式简介二、csv模块核心内容(一)模块函数(二)模块类(三)模块常量(四)模块异常

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

Python报错ModuleNotFoundError的10种解决方案

《Python报错ModuleNotFoundError的10种解决方案》在Python开发中,ModuleNotFoundError是最常见的运行时错误之一,通常由模块路径配置错误、依赖缺失或命名冲... 目录一、常见错误场景与原因分析二、10种解决方案与代码示例1. 检查并安装缺失模块2. 动态添加模块

python利用backoff实现异常自动重试详解

《python利用backoff实现异常自动重试详解》backoff是一个用于实现重试机制的Python库,通过指数退避或其他策略自动重试失败的操作,下面小编就来和大家详细讲讲如何利用backoff实... 目录1. backoff 库简介2. on_exception 装饰器的原理2.1 核心逻辑2.2

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j

Python实现获取带合并单元格的表格数据

《Python实现获取带合并单元格的表格数据》由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,所以本文我们就来聊聊如何使用Python实现获取带合并单元格的表格数据吧... 由于在日常运维中经常出现一些合并单元格的表格,如果要获取数据比较麻烦,现将将封装成类,并通过调用list_exc

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas