Python 交互式可视化的利器Bokeh的使用

2025-04-27 17:50

本文主要是介绍Python 交互式可视化的利器Bokeh的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感...

1. Bokeh 简介

Bokeh 是一个专注于 Web 端交互式数据可视化的 python 库。它基于 JavaScript 的 Bokehjs 进行渲染,使得生成的图表可以直接嵌入 html,并支持交互操作。与 Matplotlib、Seaborn 等传统静态绘图库相比,Bokeh 在处理大规模数据和交互性方面具有明显优势。

1.1 为什么选择 Bokeh

  • 交互性强:支持缩放、平移、悬停提示等交互功能。
  • 高效渲染:利用 WebGL 提高大规模数据集的绘图性能。
  • 与 Pandas 兼容:可以直接处理 DataFrame 数据。
  • 易于嵌入:可将可视化结果嵌入 H编程TML、Flask、Django 和 Jupyter Notebook。

1.2 安装与环境配置

安装 Bokeh 非常简单,可以通过 pip 直接安装:

pip install bokeh

安装后,可以在 Python 环境中测试:

from bokeh.plotting import figure, show
from bokeh.io import output_file

output_file("test.html")  # 生成 HTML 文件
p = figure(title="示例图", x_axis_label="X 轴", y_axis_label="Y 轴")
p.line([1, 2, 3, 4], [10, 20, 30, 40], line_width=2)
show(p)  # 在浏览器中显示图表

运行代码后,会在默认浏览器中打开一个 HTML 页面,显示简单的折线图。

2. Bokeh 基础

Bokeh 的核心概念主要包括:

  • figure:绘图区域,用于创建图表。
  • glyph:可视化图元,如线、点、柱状图等。
  • ColumnDataSource:数据源,便于管理数据和交互。
  • output_file/output_notebook:指定输出方式。
  • show/save:显示或保存图表。

2.1 创建基本绘图

Bokeh 提供了多种基础图表类型,包括折线图、散点图、条形图等。以下是一些常见示例。

2.1.1 折线图

from bokeh.plotting import figure, show

p = figure(title="折线图示例", x_axis_label="X", y_axis_label="Y")
p.line([1, 2, 3, 4, 5], [5, 7, 2, 3, 6], line_width=2, color="blue")
show(p)

2.1.2 散点图

p = figure(title="散点图示例", x_axis_label="X", y_axis_label="Y")
p.circwww.chinasem.cnle([1, 2, 3, 4, 5], [5, 7, 2, 3, 6], size=10, color="red", alpha=0.5)
show(p)

2.1.3 柱状图

from bokeh.io import show
from bokeh.plotting import figure
from bokeh.transform import factor_cmap
from bokeh.models import ColumnDataSource

fruits = ["苹果", "香蕉", "橙子", "葡萄"]
values = [10, 20, 15, 30]

source = ColumnDataSource(data=dict(fruits=fruits, values=values))
p = figure(x_range=fruits, title="水果销量", toolbar_location=None, tools="")
p.vbar(x="fruits", top="values", width=0.4, source=source)
show(p)

3. 交互式功能

Bokeh 的一大亮点是交互式可视化,主要通过 HoverToolTapToolBoxSelectTool 等工具实现。

3.1 鼠标悬停显示数据

from bokeh.models import HoverTool

p = figure(title="悬停提示示例", x_axis_label="X", y_axis_label="Y")
p.circle([1, 2, 3, 4], [10, 20, 30www.chinasem.cn, 40], size=10, color="navy", alpha=0.5)

hover = HoverTool(tooltips=[("X 轴", "$x"), ("Y 轴", "$y")])
p.add_tools(hover)
show(p)

3.2 选择和缩放

p = figure(title="选择和缩放示例", tools="box_select,pan,wheel_zoom,reset")
p.circle([1, 2, 3, 4], [10, 20, 30, 40], size=10, color="green", alpha=0.5)
show(p)

4. 数据流处理

Bokeh 支持动态数据更新,适用于实时数据可视化,如传感器数据、股票市场数据等。

4.1 动态数据更新

from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, curdoc
import numpy as np

source = ColumnDataSource(data=dict(x=[], y=[]))
p = figure(title="动态数据流", x_axis_label="X", y_axis_label="Y")
p.line("x", "y", source=source, line_width=2)

def update():
    new_data = dict(x=[np.random.random()], y=[np.random.random()])
    source.stream(new_data, rollover=50)

curdoc().add_root(p)
curdoc().add_periodic_callback(update, 1000)  # 每秒更新一次

运行该代码时,Bokeh 服务器会持续更新数据,并在浏览器中实时展示曲线变化。

5. Bokeh 与 Pandas、Flask/Django 集成

Bokeh 可以与 Pandaswww.chinasem.cn 结合处理数据,并与 Flask 或 Django 进行 Web 应用集成。

5.1 Bokeh + Pandas

import pandas as pd
data = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]})
source = ColumnDataSource(data)

p = figure(title="Pandas 数据绘图")
p.line("x", "y", source=source, line_width=2)
show(p)

5.2 Bokeh + Flask

from flask import Flask, render_template
from bokeh.embed import components

app = Flask(__name__)

@app.route("/")
def index():
    p = figure(title="Flask 集成示例")
    p.line([1, 2, 3, 4], [10, 20, 30, 40])
    script, div = components(p)
    return render_template("index.html", script=script, div=div)

if __name__ == "__main__":
    app.run(debug=True)

6. 总结

Bokeh 是 Python 生态中最强大的交互式可视化工具之一,适android用于大规模数据、Web 嵌入和动态数据流可视化。它的灵活性、易用性和强大的交互能力,使其成为数据科学、金融分析、物联网数据可视化的理想选择。

到此这篇关于Python 交互式可视化的利器Bokeh的使用的文章就介绍到这了,更多相关Python Bokeh内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python 交互式可视化的利器Bokeh的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154396

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1