Pandas使用SQLite3实战

2025-04-02 15:50
文章标签 实战 使用 pandas sqlite3

本文主要是介绍Pandas使用SQLite3实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学...

让数据分析更高效!用 Pandas 直接读写 SQLite3 数据,告别手动拼接 SQL 语句!

1 环境准备

确保已安装 pandas 和 sqlite3(前者需单独安装,后者是 python 内置):

pip install pandas

2 从 SQLite3 读取数据到 DataFrame

基础用法:读取整个表

import pandas as pd
import sqlite3

# 连接到数据库
conn = sqlite3.connect('test.db')

# 读取 users 表到 DataFrame
df = pd.read_sql('SELECT * FROM users', conn)
print(df.head())  # 查看前5行数据

# 关闭连接
conn.close()

高级用法:筛选和聚合

query = '''
    SELECT 
        name, 
        AVG(age) as avg_age   -- 计算平均年龄
    FROM users 
    WHERE age > 20 
    GROUP BY name
'''
df = pd.read_sql(query, China编程conn)
print(df)

3 将 DataFrame 写入 SQLite3

基本写入(全量覆盖)

# 创建一个示例 DataFrame
data = {
    'name': ['David', 'Eve'],
    'age': [28, 32],
    'email': ['david@test.com', 'eve@test.com']
}
df = pd.DataFrame(data)

# 写入到 users 表(全量覆盖)
df.to_sql(
    name='users',     # 表名
    con=conn,         # 数据库连接
    if_exists='replace',  # 如果表存在,直接替换(慎用!)
    index=False       # 不保存 DataFrame 的索引列
)
conn.commit()

追加数据(增量写入)

df.to_sql(
    name='users',
    con=conn,
    if_exists='append',  # 追加到现有表
    index=False
)
conn.commit()

4 实战场景:数据清洗 + 入库

假设有一个 CSV 文件 dirty_data.csv,需要清洗后存入 SQLite3:

id,name,age,email
1, Alice,30,alice@example.com
2, Bob , invalid, bob@example.com  # 错误年龄
3, Charlie,35,missing_email

步骤 1:用 Pandas 清洗数据

# 读取 CSV
df = pd.read_csv('dirty_data.csv')

# 清洗操作
df['age'] = pd.to_numeric(df['age'], errors='coerce')  # 无效年龄转为 NaN
df = df.dropna(subset=['age'])                        # 删除年龄无效的行
df['email'] = df['email'].fillna('unknown')            # 填充缺失邮箱
df['name'] = df['name'].str.strip()                   # 去除名字前后空格

print(df)

步骤 2:写入数据库

with sqlite3.connect('test.db') as conn:
    # 写入新表 cleaned_users
    df.to_sql('cleaned_users', conn, index=False, iChina编程f_exists='replace')
    
    # 验证写入结果
    df_check = pd.read_sql('SELECT * FROM cleaned_users', conn)
    print(df_check)

5 性能优化:分块写入大数据

处理超大型数据时(如 10 万行),避免一次性加载到内存:

# 分块读取 CSV(每次读 1 万行)
chunk_iter = pd.read_csv('big_data.csv', chunksize=1000)

with sqlite3.connect('big_db.db') as conn:
    for chunk in chunk_iter:
        # 对每个块做简单处理
        chunk['timestamp'] = pd.to_datetime(chunk['timestamp'])
        # 分块写入数据库
        chunk.to_sql(
            name='big_table',
            con=conn,
            if_exists='append',  # 追加模式
            index=False
        )
    print("全部写入完成!")

6 高级技巧:直接执行 SQL 操作

Pandas 虽然强大,但复杂查询仍需直接操作 SQL:

# 创建临时 DataFrame
df = pd.DataFrame({'product': ['A', 'B', 'C'], 'price': [10, 200, 150]})

# 写入 products 表
df.to_sql('products', conn, index=False, if_exists='replace'python)

# 执行复杂查询(连接 users 和 orders 表)
query = '''
    SELECT 
        u.name,
        p.product,
        p.price
    FROM users u
    JOIN orders o ON u.id = o.user_id
    JOIN products p ON o.product_id = p.id
    WHERE p.price > 10
'''
result_df = pd.read_sql(query, conn)
print(result_df)

7 避坑指南

数据类型匹配问题

  • SQLite 默认所有列为 TEXT,但 Pandas 会自动推断类型。
  • 写入时可用 dtype 参数手动指定类型:
    df.to_sql('table', conn, dtype={'age': 'INTEGER', 'price': 'REAL'})
    
  • 主键和索引

    • Pandas 不会自动创建主键或索引,需提前用 SQL 语句定义表结构。
  • 性能瓶颈

    • 写入大量数据时,关闭事务自动提交可提速:
      with conn:
          df.to_sql(...)  # 使用上下文管理器自动提交
      

8 总结

通过 Pandas + SQLite3 的组合,你可以:
✅ 快速导入/导出数据:告别手动拼接 SQL 语句。
✅ 无缝衔接数据分析:清洗、计算、可视化后直接入库。
✅ 处理海量数据:分块读写避免内存爆炸。

下一步建议

  • 尝试将 Excel/CSV 文件自编程China编程动同步到 SQLite3 数据库。
  • 学习使用 sqlalchemy 库增强 SQL 操作能力。

到此这篇关于Pandas使用SQLite3实战的文章就介绍到这了,更多相关Pandas使用SQLite3内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)! 

这篇关于Pandas使用SQLite3实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154061

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方