Pandas使用SQLite3实战

2025-04-02 15:50
文章标签 pandas sqlite3 实战 使用

本文主要是介绍Pandas使用SQLite3实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学...

让数据分析更高效!用 Pandas 直接读写 SQLite3 数据,告别手动拼接 SQL 语句!

1 环境准备

确保已安装 pandas 和 sqlite3(前者需单独安装,后者是 python 内置):

pip install pandas

2 从 SQLite3 读取数据到 DataFrame

基础用法:读取整个表

import pandas as pd
import sqlite3

# 连接到数据库
conn = sqlite3.connect('test.db')

# 读取 users 表到 DataFrame
df = pd.read_sql('SELECT * FROM users', conn)
print(df.head())  # 查看前5行数据

# 关闭连接
conn.close()

高级用法:筛选和聚合

query = '''
    SELECT 
        name, 
        AVG(age) as avg_age   -- 计算平均年龄
    FROM users 
    WHERE age > 20 
    GROUP BY name
'''
df = pd.read_sql(query, China编程conn)
print(df)

3 将 DataFrame 写入 SQLite3

基本写入(全量覆盖)

# 创建一个示例 DataFrame
data = {
    'name': ['David', 'Eve'],
    'age': [28, 32],
    'email': ['david@test.com', 'eve@test.com']
}
df = pd.DataFrame(data)

# 写入到 users 表(全量覆盖)
df.to_sql(
    name='users',     # 表名
    con=conn,         # 数据库连接
    if_exists='replace',  # 如果表存在,直接替换(慎用!)
    index=False       # 不保存 DataFrame 的索引列
)
conn.commit()

追加数据(增量写入)

df.to_sql(
    name='users',
    con=conn,
    if_exists='append',  # 追加到现有表
    index=False
)
conn.commit()

4 实战场景:数据清洗 + 入库

假设有一个 CSV 文件 dirty_data.csv,需要清洗后存入 SQLite3:

id,name,age,email
1, Alice,30,alice@example.com
2, Bob , invalid, bob@example.com  # 错误年龄
3, Charlie,35,missing_email

步骤 1:用 Pandas 清洗数据

# 读取 CSV
df = pd.read_csv('dirty_data.csv')

# 清洗操作
df['age'] = pd.to_numeric(df['age'], errors='coerce')  # 无效年龄转为 NaN
df = df.dropna(subset=['age'])                        # 删除年龄无效的行
df['email'] = df['email'].fillna('unknown')            # 填充缺失邮箱
df['name'] = df['name'].str.strip()                   # 去除名字前后空格

print(df)

步骤 2:写入数据库

with sqlite3.connect('test.db') as conn:
    # 写入新表 cleaned_users
    df.to_sql('cleaned_users', conn, index=False, iChina编程f_exists='replace')
    
    # 验证写入结果
    df_check = pd.read_sql('SELECT * FROM cleaned_users', conn)
    print(df_check)

5 性能优化:分块写入大数据

处理超大型数据时(如 10 万行),避免一次性加载到内存:

# 分块读取 CSV(每次读 1 万行)
chunk_iter = pd.read_csv('big_data.csv', chunksize=1000)

with sqlite3.connect('big_db.db') as conn:
    for chunk in chunk_iter:
        # 对每个块做简单处理
        chunk['timestamp'] = pd.to_datetime(chunk['timestamp'])
        # 分块写入数据库
        chunk.to_sql(
            name='big_table',
            con=conn,
            if_exists='append',  # 追加模式
            index=False
        )
    print("全部写入完成!")

6 高级技巧:直接执行 SQL 操作

Pandas 虽然强大,但复杂查询仍需直接操作 SQL:

# 创建临时 DataFrame
df = pd.DataFrame({'product': ['A', 'B', 'C'], 'price': [10, 200, 150]})

# 写入 products 表
df.to_sql('products', conn, index=False, if_exists='replace'python)

# 执行复杂查询(连接 users 和 orders 表)
query = '''
    SELECT 
        u.name,
        p.product,
        p.price
    FROM users u
    JOIN orders o ON u.id = o.user_id
    JOIN products p ON o.product_id = p.id
    WHERE p.price > 10
'''
result_df = pd.read_sql(query, conn)
print(result_df)

7 避坑指南

数据类型匹配问题

  • SQLite 默认所有列为 TEXT,但 Pandas 会自动推断类型。
  • 写入时可用 dtype 参数手动指定类型:
    df.to_sql('table', conn, dtype={'age': 'INTEGER', 'price': 'REAL'})
    
  • 主键和索引

    • Pandas 不会自动创建主键或索引,需提前用 SQL 语句定义表结构。
  • 性能瓶颈

    • 写入大量数据时,关闭事务自动提交可提速:
      with conn:
          df.to_sql(...)  # 使用上下文管理器自动提交
      

8 总结

通过 Pandas + SQLite3 的组合,你可以:
✅ 快速导入/导出数据:告别手动拼接 SQL 语句。
✅ 无缝衔接数据分析:清洗、计算、可视化后直接入库。
✅ 处理海量数据:分块读写避免内存爆炸。

下一步建议

  • 尝试将 Excel/CSV 文件自编程China编程动同步到 SQLite3 数据库。
  • 学习使用 sqlalchemy 库增强 SQL 操作能力。

到此这篇关于Pandas使用SQLite3实战的文章就介绍到这了,更多相关Pandas使用SQLite3内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)! 

这篇关于Pandas使用SQLite3实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154061

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言