使用Java实现通用树形结构构建工具类

2025-03-29 02:50

本文主要是介绍使用Java实现通用树形结构构建工具类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...

完整代码

package com.pig4cloud.pigx.common.core.util.tree;

import Java.util.*;
import java.util.function.Function;
import java.util.stream.Collectors;

/**
 * 通用树结构构建工具类
 *
 * <p>重要说明:
 * <ol>
 *   <li>所有节点必须具有唯一ID</li>
 *   <li>父节点不存在时自动成为根节点</li>
 *   <li>节点排序依赖comparator实现</li>
 *   <li>支持循环依赖检测和错误路径提示</li>
 * </ol>
 *
 * @param <T> 原始数据类型
 * @param <K> 节点ID类型(建议使用包装类型)
 */
public class TreeBuilder<T, K> {
    private final Function<T, K> idGetter;
    private final Function<T, K> parentIdGetter;
    private final ChildSetter<T> childSetter;
    private final Comparator<T> comparator;

    /**
     * 构造方法
     */
    public TreeBuilder(Function<T, K> idGetter,
                       Function<T, K> parentIdGetter,
                       ChildSetter<T> childSetter,
                       Comparator<T> comparator) {

        this.idGetter = Objects.requireNonNull(idGetter, "ID获取器不能为null");
        this.parentIdGetter = Objects.requireNonNull(parentIdGetter, "父ID获取器不能为null");
        this.childSetter = Objects.requireNonNull(childSetter, "子节点设置器不能为null");
        this.comparator = Objects.requireNonNull(comparator, "排序比较器不能为null");
    }

    /**
     * 构建完整树结构
     */
    public List<T> buildTree(List<T> items) {
        Objects.requireNonNull(items, "节点列表不能为null");
        if (items.isEmpty()) return Collections.emptyList();

        // 1. 构建数据索引
        Map<K, T> nodeMap = createNodeMap(items);
        Map<K, List<T>> parentChildrenMap = items.stream()
                .collect(Collectors.groupingBy(
                        parentIdGetter,
                        LinkedHashMap::new,  // 保持插入顺序
                        Collectors.toList()
                ));

        // 2. 循环依赖检测
        detectCyclicDependencies(items, nodeMap);

        // 3. 构建树结构
      China编程  nodeMap.forEach((nodeId, node) -> {
            List<T> children = parentChildrenMap.getOrDefault(nodeId, Collections.emptyList())
                    .stream()
                    .sorted(comparator)
                    .collect(Collectors.toList());

            childSetter.setChildren(node, Collections.unmodifiableList(children));
        });

        // 4. 获取根节点(parentId为null或不存在于nodeMap)
        return items.stream()
                .filter(item -> isRootNode(item, nodeMap))
                .sorted(comparator)
                .collect(Collectors.toList());

    }

    /**
     * 判断是否为根节点(抽离方法提升可读性)
     */
    private boolean isRootNode(T item, Map<K, T> nodeMap) {
        K parentId = parentIdGetter.apply(item);
        return parentId == null || !nodeMap.containsKey(parentId);
    }

    /**
     * 构建搜索结果树
     */
    public List<T> buildSearchTree(List<T> allItems, Set<K&SxKHNdwgt; matchIds) {
        Objects.requireNonNull(allItems, "节点列表不能为null");
        Objects.requireNonNull(matchIds, "匹配ID集合不能为null");

        Set<K> relatedIds = findRelatedIds(allItems, matchIds);
        List<T> relatedItems = allItems.stream()
                .filter(item -> relatedIds.contains(idGetter.apply(item)))
                .collect(Collectors.toList());

        return buildTree(relatedItems);
    }

    /**
     * 创建节点ID映射表(含重复检测)
     */
    private Map<K, T> createNodeMap(List<T> items) {
        Map<K, T> map = new LinkedHashMap<>(items.size());
        for (T item : items) {
            K id = idGetter.apply(item);
            if (map.containsKey(id)) {
                throw new IllegalArgumentException(String.format(
                        "发现重复节点ID: %s (冲突对象1: %s, 冲突对象2: %s)",
                        id, map.get(id), item));
            }
            map.put(id, item);
        }
        return map;
    }

    /**
     * 循环依赖检测核心逻辑
     */
    private void detectCyclicDependencies(List<T> items, Map<K, T> nodeMap) {
        Set<K> verifiedNodes = new HashSet<>();
        Map&编程lt;K, K> idToParentMap = items.stream()
                .collect(Collectors.toMap(idGetter, parentIdGetter));

        for (T item : items) {
            K currentId = idGetter.apply(item);
            if (verifiedNodes.contains(currentId)) continue;

            Set<K> path = new LinkedHashSet<>();
            K tracingId = currentId;

            while (tracingId != null) {
                if (!path.add(tracingId)) {
                    throw new CyclicDependencyException(buildCyclePath(path, tracingId));
                }

                // 短路已验证节点
                if (verifiedNodes.contains(tracingId)) break;

                K parentId = idToParentMap.get(tracingId);
                if (parentId == null) break;

                // 直接循环检测
                if (parentId.equals(tracingId)) {
                    throw new CyclicDependencyException("直接循环依赖: " + tracingId);
                }

                tracingId = parentId;
            }
            verifiedNodes.addAll(path);
        }
    }

    /**
     * 构造循环路径描述
     */
    private String buildCyclePath(Set<K> path, K duplicateId) {
        List<K> pathList = new ArrayList<>(path);
        int index = pathList.indexOf(duplicateId);
        List<K> cycle = pathList.subList(index, pathList.size());
        return "检测到循环依赖链: " + cycle.stream()
                .map(Object::toString)
                .collect(Collectors.joining(" → "));
    }

    /**
     * 查找相关ID集合(匹配节点+路径节点)
     */
    private Set<K> findRelatedIds(List<T> allItems, Set<K> matchIds) {
        Map<K, K> idToParentMap = allItems.stream()
                .collect(Collectors.toMap(idGetter, parentIdGetter));

        return matchIds.stream()
                .flatMap(id -> traceAncestors(id, idToParentMap).stream())
                .collect(Collectors.toSet());
    }

    /**
     * 追溯父节点链
     */
    private Set<K> traceAncestors(K startId, Map<K, K> idToParentMap) {
        Set<K> ancestors = new LinkedHashSet<>();
        K currentId = startId;

      android  while (currentId != null && ancestors.add(currentId)) {
            currentId = idToParentMap.get(currentId);
        }
        return ancestors;
    }

    /**
     * 自定义循环依赖异常
     */
    public static class CyclicDependencyException extends RuntimeException {
        public CyclicDependencyException(String message) {
            super(message);
        }
    }

    /**
     * 子节点设置接口
     */
    @FunctionalInterface
    public interface ChildSetter<T> {
        void setChildren(T parent, List<T> children);
    }

    /* 快捷构造方法 */

    public static <T, K> TreeBuilder<T, K> create(
            Function<T, K> idGetter,
            Function<T, K> parentIdGetter,
            ChildSetter<T> childSetter,
            Comparator<T> comparator) {
        return new TreeBuilder<>(idGetter, parentIdGetter, childSetter, comparator);
    }

    public static <T, K extends Comparable<? super K>> TreeBuilder<T, K> createWithNaturalOrder(
            Function<T, K> idGetter,
            Function<T, K> parentIdGetter,
            ChildSetter<T> childSetter) {
        return new TreeBuilder<>(
                idGetter,
                parentIdGetter,
                childSetter,
                Comparator.comparing(idGetter, Comparator.nullsLast(Comparator.naturalOrder()))
        );
    }
}

一、设计思想与核心功能

本工具类采用泛型设计,可处理任意类型的节点数据,具备以下核心能力:

  • 多类型支持:通过泛型参数T(数据类型)和K(ID类型),支持各种业务场景
  • 自动化构建:自动识别根节点、建立父子关系
  • 安全防护:内置循环依赖检测、重复ID校验
  • 灵活扩展:支持自定义排序规则、子节点设置方式
  • 高效查询:提供子树构建功能,适用于搜索场景

二、核心实现原理

1. 数据结构准备阶段

Map<K, T> nodeMap = createNodeMap(items);
Map<K, List<T>> parentChildrenMap = items.stream()
        .collect(Collectors.groupingBy(...));
  • 节点映射表:通过ID快速定位节点,验证ID唯一性
  • 父子关系映射:预先生成父节点→子节点列表的关系字典

2. 循环依赖检测算法

采用路径追踪法,时间复杂度O(n):

Set<K> path = new LinkedHashSet<>();
while (tracingId != null) {
    if (!path.add(tracingId)) {
        throw new CyclicDependencyException(...);
    }
    // 追溯父节点链
}

可检测两种异常情况:

  • 直接循环:父节点指向自身
  • 间接循环:A→B→C→A型循环链

3. 树形结构构建

采用两阶段构建模式:

  • 初始化所有节点的子节点列表
  • 筛选根节点(父ID不存在或对应节点缺失)

4. 搜索子树生成

通过ID回溯算法构建有效路径:

Set<K> traceAncestors(K startId) {
    // 向上追溯所有祖先节点
}

确保搜索结果的完整树形结构

三、关键代码详解

1. 节点排序实现

childSetter.setChildren(node, 
    children.stream()
        .sorted(comparator)
        .collect(Collectors.toList())
);

支持两种排序方式:

  • 自然排序(createWithNaturalOrder)
  • 自定义比较器(推荐业务相关排序)

2. 异常处理机制

自定义异常类型增强可读性:

public class CyclicDependencyException extends RuntimeException {
    // 携带具体循环路径信息
}

提供明确的错误定位信息:

检测到循环依赖链: 1001 → 1002 → 1003 → 1001

3. 函数式接口应用

@FunctionalInterface
public interface ChildSetter<T> {
    void setChildren(T parent, List<T> children);
}

使用时可通过Lambda表达式实现:

TreeBuilder<Department, Long> builder = 
    new TreeBuilder<>(..., (parent, children) -> parent.setChildDepts(children));

四、使用示例

基础用法

List<Menu> menus = getFromDB();

TreeBuilder<Menu, Integer> builder = TreeBuilder.create(
    Menu::getId,
    Menu::getParentId,
    (parent, children) -> parent.setChildren(children),
    Comparator.comparing(Menu::getSortOrder)
);

List<Menu> tree = builder.buildTree(menus);

搜索场景应用

Set<Integer> matchIds = searchService.findIds("关键");
List<Menu> resultTree = builder.buildSearchTree(allMenus, matchIds);

五、注意事项

  • ID规范
    • 必须实现有效的hashCode()和equals()
    • 推荐使用包装类型(避免Long与long的匹配问题)
  • 对象状态
    • 原始数据对象应支持子节点集合设置
    • 建议China编程使用不可变集合防止意外修改
  • 特殊场景
    • 空集合处理返回emptyList()
    • 允许游离节点(父节点不存在时成为根节点)
  • 性能考量
    • 万级数据量建议分批处理
    • 频繁构建时可缓存nodeMap

以上就是使用Java实现通用树形结构构建工具类的详细内容,更多关于Java构建树形结构的资料请关注编程China编程(www.chinasem.cn)其它相关文章!

这篇关于使用Java实现通用树形结构构建工具类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153999

相关文章

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF