Java的volatile和sychronized底层实现原理解析

2025-03-15 13:50

本文主要是介绍Java的volatile和sychronized底层实现原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以...

1. 概览

Java代码级别到硬件级别各层都是如何实现的

Java的volatile和sychronized底层实现原理解析

2. Synchronized

2.1 字节码层面

使用javap -verbose <class文件>可以查看到字节码信息,其中synchronized方法会有flags:ACC_SYNCHRONIZED,此时字节码中不会包含monitorenter和moniotrexit,JVM会自动加

public synchronized void syncMethod();
  flags: ACC_PUBLIC, ACC_SYNCHRONIZED

使用``javap -verbose <class文件>`编译一个带synchronized块的代码可以看到字节码中的monitorenter和moniotrexit

0: new #2                  // 创建一个新的Object实例
3: dup
4: invokespecial #1        // 调用Object的构造函数
7: astore_1                // 将引用存储到局部变量1(lock)
8: aload_1                 // 将局部变量1(lock)加载到操作数栈
9: monitorenter            // 进入monitor
10: ...                    // 同步块体的字节码
   : aload_1
   : monitorexit           // 退出monitor
   : ...

2.2 JVM层面

源码可以在github上面查看

monitorenter底层是由JVM的代码ObjectMonitor来实现的

ObjectMonitor() {
    // 多线程竞争锁进入时的单向链表
    ObjectWaiter * volatile _cxq;
    //处于等待锁block状态的线程,会被加入到该列表
    ObjectWaiter * volatile _EntryList;
    // _header是一个markOop类型,markOop就是对象头中的Mark Word
    volatile markOop _header;
    // 抢占该锁的线程数,约等于WaitSet.size + EntryList.size
    volatile intptr_t _count;
    // 等待线程数
    volatile intptr_t _waiters;
    // 锁的重入次数
    volatile intptr_ _recursions;
    // 监视器锁寄生的对象,锁是寄托存储于对象中
    void* volatile  _object;
    // 指向持有ObjectMonitor对象的线程
    void* volatile _owner;
    // 处于wait状态的线程,会被加入到_WaitSet
    ObjectWaiter * volatile _WaitSet;
    // 操作WaitSet链表的锁
    volatile int _WaitSetLock;
    // 嵌套加锁次数,最外层锁的_recursions属性为0
    volatile intptr_t  _recursions;
}

2.2.1 enter方法

整个方法比较长,但我们了解的无锁、偏向锁、轻量级锁、重量级锁都可以看到,核心方法是Atomic::cmpxchg_ptr,这个是CAS操作

方法描述
偏向锁Atomic::cmpxchg_ptr将owner替换为当前线程,成功则获取到锁
轻量级锁TrySpin->Atomic::cmpxchg_ptr不断自旋将owner替换为当前线程,成功则获取到锁
重量级锁EnterI>Atomic::cmpxchg_ptrpark然后将owner替换为当前线程,成功则获取到锁
void ATTR ObjectMonitor::enter(TRAPS) {
  // The following code is ordered to check the most common cases first
  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
  Threandroidad * const Self = THREAD ;
  void * cur ;
  // 无锁CAS 转为 偏向锁
  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  if (cur == NULL) {
     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
     assert (_recursions == 0   , "invariant") ;
     assert (_owner      == Self, "invariant") ;
     // CONSIDER: set or assert OwnerIsThread == 1
     return ;
  }
	// 可重入锁
  if (cur == Self) {
     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
     _recursions ++ ;
     return ;
  }
  if (Self->is_lock_owned ((address)cur)) {
    assert (_recursions == 0, "internal state error");
    _recursions = 1 ;
    // Commute owner from a thread-specific on-stack BasicLockObject address to
    // a full-fledged "Thread *".
    _owner = Self ;
    OwnerIsThread = 1 ;
    return ;
  }
  // We've encountered genuine contention.
  assert (Self->_Stalled == 0, "invariant") ;
  Self->_Stalled = intptr_t(this) ;
  // Try one round of spinning *before* enqueueing Self
  // and before going through the awkward and expensive state
  // transitions.  The following spin is strictly optional ...
  // Note that if we acquire the monitor from an initial spin
  // we forgo posting JVMTI events and firing DTRACE probes.
  // 自旋获取锁
  if (Knob_SpinEarly && TrySpin (Self) > 0) {
     assert (_owner == Self      , "invariant") ;
     assert (_recursions == 0    , "invariant") ;
     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
     Self->_Stalled = 0 ;
     return ;
  }
  assert (_owner != Self          , "invariant") ;
  assert (_succ  != Self          , "invariant") ;
  assert (Self->is_Java_thread()  , "invariant") ;
  JavaThread * jt = (JavaThread *) Self ;
  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
  assert (this->object() != NULL  , "invariant") ;
  assert (_count >= 0, "invariant") ;
  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
  // Ensure the object-monitor relationship remains stable while there's contention.
  Atomic::inc_ptr(&_count);
  EventJavaMonitorEnter event;
  { // Change java thread status to indicate blocked on monitor enter.
    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
    if (JvmtiExport::should_post_monitor_contended_enter()) {
      JvmtiExport::post_monitor_contended_enter(jt, this);
    }
    OSThreadContendState osts(Self->osthread());
    ThreadBlockInVM tbivm(jt);
    Self->set_current_pending_monitor(this);
    // TODO-FIXME: change the following for(;;) loop to straight-line code.
    for (;;) {
      jt->set_suspend_equivalent();
      // cleared by handle_special_suspend_equivalent_condition()
      // or java_suspend_self()
			// 重量级锁
      EnterI (THREAD) ;
    省略.......
}

2.2.2 cmpxchg_ptr

上面的锁都用了这个方法cmpxchg_ptr,这个和java中的cas是类似的,那它又是怎么实现的呢

atomic源码

其中cmpxchg是linux操作系统的函数,执行了一段汇编指令,并且有lock前缀

// 多核心多cpu前面就要加lock
#define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: "
inline intptr_t Atomic::cmpxchg_ptr(intptr_t exchange_value, volatile intptr_t* dest, intptr_t compare_value) {
  return (intptr_t)cmpxchg((jlong)exchange_value, (volatile jlong*)dest, (jlong)compare_value);
}
inline jlong    Atomic::cmpxchg    (jlong    exchange_value, volatile jlong*    dest, jlong    compare_value) {
  bool mp = os::is_MP();
  __asm__ __volatile__ (LOCK_IF_MP(%4) "cmpxchgq %1,(%3)"
                        : "=a" (exchange_value)
                        : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
                        : "cc", "memory");
  return exchange_value;
}

3. Volatile

3.1 字节码层面

  static volatile int greaterThanSevenCnt;
    descriptor: I
    flags: ACC_STATIC, ACC_VOLATILE

3.2 JVM层面

Github源码

可以看到判断是否是volatile字段,是的话最后会有OrderAccess::storeload(); , 就是就是storeload屏障

CASE(_putfield):
CASE(_putstatic):
 http://www.chinasem.cn   {
          // .... 省略若干行 
          // ....
          // Now store the result 现在要开始存储结果了
          // ConstantPoolCacheEntry* cache;     -- cache是常量池缓存实例
          // cache->is_volatile()               -- 判断是否有volatile访问标志修饰
          int field_offset = cache->f2_as_index();
          if (cache->is_volatile()) { // ****重点判断逻辑**** 
            // volatile变量的赋值逻辑
            if (tos_type == itos) {
              obj->release_int_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == atos) {// 对象类型赋值
              VERIFY_OOP(STACK_OBJECT(-1));
              obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
            } else if (tos_type == btos) {// byte类型赋值
              obj->release_byte_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == ltos) {// long类型赋值
              obj->release_long_field_put(field_offset, STACK_LONG(-1));
            } else if (tos_type == ctos) {// char类型赋值
              obj->release_char_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == stos) {// short类型赋值
              obj->release_short_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == ftos) {// float类型赋值
              obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
            } else {// double类型赋值
              obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
            }
            // *** 写完值后的storeload屏障 ***
            OrderAccess::storeload();
          } else {
            // 非volatile变量的赋值逻辑
            if (tos_type == itos) {
              obj->int_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == atos) {
              VERIFY_OOP(STACK_OBJECT(-1));
              obj->obj_field_put(field_offset, STACK_OBJECT(-1));
              OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
            } else if (tos_type == btos) {
              obj->byte_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == ltos) {
              obj->long_field_put(field_offset, STACK_LONG(-1));
            } else if (tos_type == ctos) {
              obj->char_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == stos) {
              obj->short_field_put(field_offset, STACK_INT(-1));
            } else if (tos_type == ftos) {
              obj->float_field_put(field_offset, STACK_FLOAT(-1));
            } else {
              obj->double_field_put(field_offset, STACK_DOUBLE(-1));
            }
          }
          UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  }

进入OrderAccess源码可以看到,直接执行了一段汇编指令,并且有lock前缀

inline void OrderAccess::storeload()  { fence(); }
inline void OrderAccess::fence() {
  if (os::is_MP()) {
    // always use locked addl since mfence is sometimes expensive
#ifdef AMD64
    __asm__ volatile ("lock; addl $0,0(%%rsp)" : : : "cc", "memory");
#else
    __asm__ volatile ("lock; addl $0,0(%%esp)" : : : "cc", "memory");
#endif
  }
}

4. lock指令

在上面的分析中,最底层都设计到汇编层面的lock指令,这个指令有什么作用呢?

根据汇编参考文档IA-32 Assembly Language Reference Manual

The LOCK # signal is asserted during execution of the instruction following the lock prefix. This signal can be used in a multiprocessor system to ensure exclusive use of shared memory while LOCK # is asserted. The bts instruction is the read-modify-write sequence used to implement test-and-run. The lock prefix works only with the instructions listed here. If a lock prefix is used with anChina编程y other instructions, an undefined opcode trap is generated.

Lock是一个指令前缀,用于多核处理器系统不使用共享内存

那么它又是怎么让其他核心不访问共享内存,有两种方法

  • 锁内存总线,也就是说执行这条指令的时候,其他的核心都不能在访问内存了
  • 锁缓存行,现在CPU本身是有多级缓存的,而这些缓存是如何保持一致的,由MESI来支持,MESI协议可以保证其他核心不使用内存,或者换一种说法,可以使用,但被修改的内容会失效

5. MESI协议

现代CPU多核架构中为了协调快速的CPU运算和相对较慢的内存读写速度之间的矛盾,在CPU和内存之间引入了CPU cache:

Java的volatile和sychronized底层实现原理解析

MESI协议下,缓存行(cache line)有四种状态来保证缓存的一致性

  • 已修改Modified (M) 缓存行是脏的,与主存的值不同。如果别的CPU内核要读主存这块数据,该缓存行必须回写到主存,状态变为共享(S)
  • 独占Exclusive (E) 缓存行只在当前缓存中,但是干净的(clean)–缓存数据同于主存数据。当别的缓存读取它时,状态变为共享;当前写数据时,变为已修改状态。
  • 共享Shared (S) 缓存行也存在于其它缓存中且是干净的。缓存行可以在任意时刻抛弃。
  • 无效Invalid (I) 缓存行是无效的,需要从主内存中读取最新值

每次要修改缓存,如果缓存行状态为 S 的话都要先发一个 invalidate 的广播,再等其他 CPU 将缓存行设置为无效后返回 invalidate ack 才能写到 Cache 中,因为这样才能保证缓存的一致性

但是如果 CPU 频繁地修改数据,就会不断地发送广播消息,CPU 只能被动同步地等待其他 CPU 的消息,显然会对执行效率产生影响

为了解决此问题,工程师在 CPU 和 cache 之间又加了一个 store buffer,同时在cache和总线之间添加了Invalidate Queue

这个buffer可以让广播和收广播的处理异步化,效率当然会变高,但强一致性变为了最终一致性

lock指令是CPU硬件工程师给程序员留的一个口子,把对MESI协议的优化(store buffer, invalidate queue)禁用,暂时以同步方式工作,使得对于该关键字的MESI协议退回强一致性状态

6. 总结

分析到此:

所有的并发问题可以概括为,多个核心同时修改内存数据,导致结果不符合预期

解决并发问题的方法可以概括为,同一时间只能让一个核心修改内存,但有多种手段,例如锁总线、或者广播让其他核心失效

7. 其他问题

既然sychronized的和volatile底层实现是一样的,那么volatile为什么没有原子性呢?

在于锁定的范围,volatile修饰的是一个字段,只能保证读和写是原子性的,但读出来、在计算、写入分为三步则不是原子性的。

sychronized底层也用了volatile的,但它的锁定范围是程序员指定的,这个范围之间的代码是原子的

cas volatile变量开始锁定
任意程序代码
cas volatile变量释放锁定
  • javascript在一般推荐使用Java的Atomic类,他是通过CAS来实现的,它和sychronized的区别是什么?

    cas不能单独使用,需要加自旋操作,本身是一个乐观锁

    sychronized本身结合了乐观锁和悲观锁,悲观锁会让线程park然后重试,不会消耗CPU,而乐观锁但不断消耗cpu

8. 对比

在阅读ObjectMonitor代码时,发现有很熟悉的感觉

Java的volatile和sychronized底层实现原理解析

发现这些锁的数据结果都是类似的,一个volatile变量加一个等待队列

参考

【1】]synchronized 关键字底层原理

【2】Java多线程:objectMonitor源码解读(3)

【3】Linux Kernel CMPXCHG函数分析

【4】聊聊CPU的LOCK指令

【5】12 张图看懂 CPU 缓存一致性与 MESI 协议,真的一致吗?

【6】MESI和volatile的关系详解

【7】volatile底层原理详解

【8】浅析mutex实现原理

【9】CAS你以为你真的懂?

【10】x86 LOCK 指令前缀

【11】Linux Mutex机制分析

到此这篇关于Java的volatile和sychronized底层实现原理解析的文章就介绍到这了,更多相关Java volatile和sychronized底层内容请搜索编程China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于Java的volatile和sychronized底层实现原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153761

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三