关于最长递增子序列问题概述

2025-02-15 05:50

本文主要是介绍关于最长递增子序列问题概述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效...

一、最长递增子序列问题概述

1. 问题定义

给定一个整数序列,例如 nums = [10, 9, 2, 5, 3, 7, 101, 18],要找出它的一个最长的子序列,使得这个子序列中的元素是严格递增的。

在上述例子中,最长递增子序列是 [2, 3, 7, 101] 或者 [2, 5, 7, 101] 等,长度为 4。

2. 常规动态规划解法思路及缺点

思路

  • 通常可以定义一个 dp 数组,其中 dp[i] 表示以 nums[i] 为结尾的最长递增子序列的长度。
  • 状态转移方程一般为 dp[rPEbRpAi] = max(dp[j]) + 1(其中 0 <= j < inums[j] < nums[i]),也就是遍历前面所有小于 nums[i] 的元素对应的 dp 值,取最大的那个再加 1 来更新 dp[i]
  • 最后整个序列的最长递增子序列长度就是 dp 数组中的最大值。

缺点

  • 这种常规解法的时间复杂度是 ,当输入序列长度 n 较大时,效率会比较低
  • 所以需要进行优化来降低时间复杂度,提升求解效率

二、优化解法一:贪心 + 二分查找(时间复杂度优化至nlogn )

1. 贪心思想

维护一个数组 tail,它用来存储当前找到的最长递增子序列的 “尾巴” 元素,这个数组的长度其实就代表了当前找到的最长递增子序列的长度(初始时长度为 0)。

对于新遍历到的元素 nums[i],我们希望以一种贪心的策略把它尽可能合理地添加到 tail 数组中,使得 tail 数组始终保持一种有序的状态(因为递增子序列的特性决定了 “尾巴” 元素是有序递增的),这样就能通过后续的操作高效地找到最长递增子序列。

2. 二分查找的运用

每当遍历到一个新元素 nums[i] 时,我们在 tail 数组中通过二分查找找到第一个大于等于 nums[i] 的元素位置 pos(可以利用 Java 中的 Arrays.binarySearch 等二分查找相关方法实现,若没找到则返回插入点,即合适的位置)。

  • 如果 pos 等于 tail 数组当前长度,说明 nums[i] 比当前所有的 “尾巴” 元素都大,那它就可以作为新的 “尾巴” 元素添加到 tail 数组末尾,使得最长递增子序列长度加 1,即 tail = Arrays.copyOf(tail, tail.length + 1); tail[tail.length - 1] = nums[i];
  • 如果 pos 小于 tail 数组当前长度,说明 nums[i] 可以替换掉 tail[pos],因为这样做不会破坏递增子序列的性质,而且有可能在后续找到更长的递增子序列,即 tail[pos] = nums[i];

3. Java 代码示例

import java.util.Arrays;

public class LongestIncreasingSubsequence {
    public static int lengthOfLIS(int[] nums) {
        int[] tail = new int[nums.length];
        int len = 0;
        for (int num : nums) {
            int pos = Arrays.binarySearch(tail, 0, len, num);
            if (pos < 0) {
                pos = -(pos + 1);
            }
            tail[pos] = num;
            if (pos == len) {
                len++;
            }
        }
        return len;
    }

    public static void main(String[] args) {
China编程        int[] nums = {10, 9, 2, 5, 3, 7, 101, 18};
        int result = lengthOfLIS(nums);
        System.out.println("最长递增子序列长度为: " + result);
    }
}

在上述代码中:

  • lengthOfphpLIS 方法实现了优化后的最长递增子序列求解逻辑。通过不断遍历输入数组 nums,利用二分查找在 tail 数组中定位合适位置来更新 tail 数组,同时维护最长递增子序列的长度 len
  • main 方法进行简单测试,传入示例数组并输出最终计算得到的最长递增子序列长度。

三、优化解法二:动态规划 + 状态压缩(时间复杂度仍为O(n^2) ,但空间复杂度优化)

1. 思路

原始动态规划解法中我们使用了一个 dp 数组来记录以每个元素为结尾的最长递增子序列长度,但是其实在计算 dp[i] 时,我们只需要知道前面元素中小于 nums[i] 的那些元素对应的 dp 值情况,并不需要把所有之前元素对应的 dp 值都完整保存下来。

所以可以通过状态压缩,只使用一个长度为 n 的一维数组来模拟动态规划过程,每次更新当前元素对应的 dp 值时,及时覆盖之前不再需要的值,从而节省空间。

2. Java 代码示例

public class LongestIncreasingSubsequence {
    public static int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];
        int maxLen = 1;
        for (int i = 0; i < n; i++) {
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[j] < nums[i]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
            maxLen = Math.max(maxLen, dp[i]);
        }
        return maxLen;
    }

    public static void main(String[] args) {
        int[] nums = {10, 9, 2, 5, 3, 7, 101, 18};
        int result = lengthOfLIS(nums);
        System.out.println("最长递增子序列长度为: " + result);
    }
}

在这个代码示例中:

  • lengthOfLIS 方法里,通过一个一维的 dp 数组来进行动态规划求解,内层循环中不断更新 dp[i] 的值,并且实时维护最大的最长递编程增子序android列长度 maxLen,最后返回 maxLen 作为结果。
  • main 方法同样是用于简单的测试场景,展示如何调用 lengthOfLIS 方法并输出结果。

通过这些优化解法,可以更高效地解决最长递增子序列问题,在不同的应用场景和数据规模下根据实际需求选择合适的优化方式来提升算法性能。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持China编程(www.chinasem.cn)。

这篇关于关于最长递增子序列问题概述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153447

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.