使用C++实现单链表的操作与实践

2025-02-10 16:50

本文主要是介绍使用C++实现单链表的操作与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应...

一、单链表的基本概念

单链表是一种由节点组成的线性数据结构,其中每个节点包含数据部分和指向下一个节点的指针。与数组不同,链表的节点在内存中不要求连续存储,而是通过指针连接。因此,链表的插入和删除操作较为灵活,不需要大量的数据移动。

在C++中,我们通过类的封装特性来实现面向对象的链表,这不仅能有效管理链表的内存,还能通过封装实现更易用、更安全的操作。

二、单链表类的设计

我们将通过一个简单的C++类来实现单链表,该类包含基本的链表操作,如插入、删除、打印链表等。

1. 节点的定义

首先,我们定义了一个 Node 结构体来表示链表中的每个节点。每个节点包含一个数据部分 data 和一个指向下一个节点的指针&n编程bsp;next

struct Node {
    int data;      // 数据域
    Node* next;    // 指针域,指向下一个节点
};

2. 链表的类定义

接下来,我们定义 List 类,它包含一个指向链表头部的指针 phead,以及若干成员函数来实现链表的常见操作。

class List {
private:
    Node* phead; // 链表头指针

public:
    // 构造函数
    List() : phead(nullptr) {}

    // 析构函数
    ~List() {
        while (phead != nullptr) {
            PopFront();
        }
    }

    // 创建节点
    Node* CreateNode(int x) {
        Node* node = new Nodandroide;
        node->data = x;
        node->next = nullptr;
        return node;
    }

    // 打印链表
    void PrintList() {
        Node* cur = phead;
        while (cur) {
            cout << cur->data << "-->";
            cur = cur->next;
        }
        cout << "NULL" << endl;
    }

    //eSeNtxKJV 头插法
    void PushFront(int x) {
        Node* newNode = CreateNode(x);
        newNode->next = phead;
        phead = newNode;
    }

    // 尾插法
    void PushBack(int x) {
        Node* newNode = CreateNode(x);
        if (phead == nullptr)
            phead = newNode;
        else {
            Node* tail = phead;
            while (tail->next != nullptr) {
                tail = tail->next;
            }
            tail->next = newNode;
        }
    }

    // 头删
    void PopFront() {
        if (phead == nullptr)
            cout << "链表为空,无法进行删除操作!" << endl;
        else {
            Node* del = phead;
            phead = del->next;
            delete del;
            del = nullptr;
        }
    }

    // 尾删
    void PopBack() {
        if (phead == nullptr)
            cout << "链表为空,无法进行删除操作!" << endl;
        else {
            if (phead->next == nullptr) {
                delete phead;
                phead = nullptr;
            } else {
                Node* tail = phead;
                while (tail->next->next != nullptr) {
                    tail = tail->next;
                }
                delhttp://www.chinasem.cnete tail->next;
                tail->next = nullptr;
            }
        }
    }
};

三、单链表的操作实现

  • PushFront: 在链表的头部插入新节点。
  • PushBack: 在链表的尾部插入新节点。
  • PopFront: 删除链表的头节点。
  • PopBack: 删除链表的尾节点。
  • PrintList: 打印链表中的所有节点。

四、测试与演示

下面的 main 函数展示了如何使用上述链表类实现基本操作:

int main() {
    List ls1;  // 创建一个链表对象

    // 进行一些操作
    ls1.PushBack(1);
    ls1.PushBack(2);
    ls1.PushBack(3);
    ls1.PushBack(4);
    ls1.PushBack(5);

    // 打印链表
    ls1.PrintList();

    // 头删除和尾删除
    ls1.PopFront();
    ls1.PopBack();

    // 头插操作
    ls1.PushFront(9);

    // 打印链表
    ls1.PrintList();

    return 0;
}

五、链表操作的复杂度

  1. PushFront 和 PopFront:这两个操作的时间复杂度为 O(1),因为它们仅仅操作链表的头节点。
  2. PushBack 和 PopBack:这两个操作的时间复杂度为 O(n),需要遍历整个链表,直到找到尾节点。
  3. PrintList:打印链表的时间复杂度为 O(n),需要遍历所有节点。

六、完整代码

#include<IOStream>
using namespace std;
//节点类型声明
structpython Node
{
    int date;
    Node* next;
};
class List
{
private:
    //成员变量
    Node* phead;
public:
    //成员函数
    List() : phead(nullptr) {}//构造函数
    ~List()//析构函数
    {
        while(phead!=NULL)
        {
            PopFront();
        }
    }
    Node* CreateNode(int x)//创建节点
    {
        Node* node=new Node;
        node->date=x;
        node->next=NULL;
        return node;
    }
    void PrintList()//打印链表
    {
        Node *cur=phead;
        while(cur)
        {
            cout<<cur->date<<"-->";
            cur=cur->next;
        }
        cout<<"NULL"<<endl;
    }
    void PushFront(int x)//头插
    {
        Node*newnode=CreateNode(x);
        newnode->next=phead;
        phead=newnode;
    }
    void PushBack(int x)//尾插
    {
        Node*newnode=CreateNode(x);
        if(phead==NULL)
            phead=newnode;
        else
        {
            Node* tail = phead;
            while (tail->next != NULL)
            {
                tail = tail->next;
            }
            tail->next = newnode;
        }

    }
    void PopFront() //头删
    {
        if (phead==NULL)
            cout<<"链表为空,无法进行删除操作!"<<endl;
        else
        {
            Node* del=phead;
            phead=del->next;
            delete del;
            del=NULL;
        }
    }

    void PopBack()  //尾删
    {
        if (phead== NULL)
            cout<<"链表为空,无法进行删除操作!"<<endl;
       else
        {
           if(phead->next==NULL)
           {
               delete phead;
               phead=NULL;
           }
           else
           {
               Node* tail = phead;
               while (tail->next->next != NULL)
               {
                   tail = tail->next;
               }
               delete tail->next;
               tail->next=NULL;
           }
        }
    }

};
int main()
{
    List ls1;
    ls1.PushBack(1);
    ls1.PushBack(2);
    ls1.PushBack(3);
    ls1.PushBack(4);
    ls1.PushBack(5);
    ls1.PrintList();
    ls1.PopFront();
    ls1.PopBack();
    ls1.PushFront(9);
    ls1.PrintList();
    return 0;
}

七、总结

通过面向对象的方式实现单链表,我们可以更加方便和安全地进行链表操作。封装了节点管理、内存管理以及链表操作函数的类,让链表操作更加直观并且容易维护。在实际开发中,链表结构广泛应用于各种算法和数据管理系统,掌握链表的使用可以帮助我们高效地解决许多动态数据管理的问题。

以上就是使用C++实现单链表的操作与实践的详细内容,更多关于C++实现单链表的资料请关注China编程(www.chinasem.cn)其它相关文章!

这篇关于使用C++实现单链表的操作与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153377

相关文章

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

python之uv使用详解

《python之uv使用详解》文章介绍uv在Ubuntu上用于Python项目管理,涵盖安装、初始化、依赖管理、运行调试及Docker应用,强调CI中使用--locked确保依赖一致性... 目录安装与更新standalonepip 安装创建php以及初始化项目依赖管理uv run直接在命令行运行pytho

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Kotlin 枚举类使用举例

《Kotlin枚举类使用举例》枚举类(EnumClasses)是Kotlin中用于定义固定集合值的特殊类,它表示一组命名的常量,每个枚举常量都是该类的单例实例,接下来通过本文给大家介绍Kotl... 目录一、编程枚举类核心概念二、基础语法与特性1. 基本定义2. 带参数的枚举3. 实现接口4. 内置属性三、

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成