Python利用自带模块实现屏幕像素高效操作

2025-02-10 04:50

本文主要是介绍Python利用自带模块实现屏幕像素高效操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下...

1、获取屏幕放缩比例

from ctypes import wintypes
import ctypes
 
 
HORZRES = 8
LOGPIXELSX = 118
 
 
def get_scale_factor() -> float:
    user32 = ctypes.windll.user32
    gdi32 = ctypes.windll.gdi32
 
    # 定义 HDC 和 UINT 类型
    HDC = wintypes.HDC
    UINT = wintypes.UINT
 
    # 定义 GetDC 和 GetDeviceCaps 的参数类型和返回类型
    user32.GetDC.argtypes = [wintypes.HWND]
    user32.GetDC.restype = HDC
 
    gdi32.GetDeviceCaps.argtypes = [HDC, UINT]
    gdi32.GetDeviceCaps.restype = wintypes.INT
 
    # 获取设备上下文
    dc = user32.GetDC(None)
    widthScale = gdi32.GetDeviceCaps(dc, HORZRES)
    width = gdi32.GetDeviceCaps(dc, LOGPIXELSX)
    scale = width / widthScale
    return scale

2、获取屏幕指定坐标处像素颜色

import ctypes
from ctypes import wintypes
from typing import Sequence, Generator
 
 
user32 = ctypes.windll.user32
gdi32 = ctypes.windll.gdi32
 
# 定义类型
HWND = wintypes.HWND
HDC = wintypes.HDC
HBITMAP = wintypes.HBITMAP
 
 
class BITMAPINFOHEADER(ctypes.Structure):
    _fields_ = [
        ("biSize", wintypes.dwORD),
        ("biWidth", wintypes.LONG),
        ("biHeight", wintypes.LONG),
        ("biPlanes", wintypes.WORD),
        ("biBitCount", wintypes.WORD),
        ("biCompression", wintypes.DWORD),
        ("biSizeImage", wintypes.DWORD),
        ("biXPelsPerMeter", wintypes.LONG),
        ("biYPelsPerMeter", wintypes.LONG),
        ("biClrUsed", wintypes.DWORD),
        ("biClrImportant", wintypes.DWORD)
    ]
 
class BITMAPINFO(ctypes.Structure):
    _fields_ = [
        ("bmiHeader", BITMAPINFOHEADER),
        ("bmiColors", wintypes.DWORD * 3)
    ]
 
 
def get_pixel_color(coords: Sequence[tuple[int, int]China编程], hwnd: HWND) -> Generator[tuple[int, int, int], None, None]:
    rect = wintypes.RECT()
    user32.GetClientRect(hwnd, ctypes.byref(rect))
    width = rect.right - rect.left
    height = rect.bottom - rect.top
 
    # 创建内存设备上下文
    hdc_src = user32.GetDC(hwnd)
    hdc_dst = gdi32.CreateCompatibleDC(hdc_src)
    bmp = gdi32.CreateCompatibleBitmap(hdc_src, width, height)
    gdi32.SelectObject(hdc_dst, bmp)
 
    # 使用 BitBlt 复制窗口内容到内存设备上下文
    gdi32.BitBlt(hdc_dst, 0, 0, width, height, hdc_src, 0, 0, 0x00CC0020)  # SRCCOPY
 
    # 获取位图信息
    bmi = BITMAPINFO()
    bmi.bmiHeader.biSize = ctypes.sizeof(BITMAPINFOHEADER)
    bmi.bmiHeader.biWidth = width
    bmi.bmiHeader.biHeight = -height  # 负值表示自底向上
    bmi.bmiHeader.biPlanes = 1
    bmi.bmiHeader.biBitCount = 32
    bmi.bmiHeader.biCompression = 0
 
    # 创建缓冲区并获取位图数据
    buffer = ctypes.create_string_buffer(width * height * 4)
    gdi32.GetDIBits(hdc_dst, bmp, 0, height, buffer, ctypes.byref(bmi), 0)
 
    # 释放资源
    androidgdi32.DeleteObject(bmp)
    gdi32.DeleteDC(hdc_dst)
    user32.ReleaseDC(hwnd, hdc_src)
 
    # 遍历指定坐标并返回像素颜色
    for x, y in coords:
        if 0 <= x < width and 0 <= y < height:
            offset = (y * width + x) * 4
            color = buffer[offset:offset + 4]
            yield color[2], color[1], color[0]  # BGR -> RGB
        else:
            yield (0, 0, 0)

3、一个简单的使用案例

from typing import Sequence, Generator, Tuple
from tkinter import ttk
import tkinter as tk
from ctypes import wintypes
import ctypes
import requests
from io import BytesIO
from PIL import Image, ImageTk
 
 
 
 
 
user32 = ctypes.windll.user32
gdi32 = ctypes.windll.gdi32
 
HWND = wintypes.HWND
HDC = wintypes.HDC
HBITMAP = wintypes.HBITMAP
 
 
class BITMAPINFOHEADER(ctypes.Structure):
    _fields_ = [
        ("biSize", wintypes.DWORD),
        ("biWidth", wintypes.LONG),
        ("biHeight", wintypes.LONG),
        ("biPlanes", wintypes.WORD),
        ("biBitCount", wintypes.WORD),
        ("biCompression", wintypes.DWORD),
        ("biSizeImage", wintypes.DWORD),
        ("biXPelsPerMeter", wintypes.LONG),
        ("biYPelsPerMeter", wintypes.LONG),
        ("biClrUsed", wintypes.DWORD),
        ("biClrImportant", wintypes.DWORD)
    ]
 
 
class BITMAPINFO(ctypes.Structure):
    _fields_ = [
        ("bmiHeader", BITMAPINFOHEADER),
        ("bmiColors", wintypes.DWORD * 3)
    ]
 
 
def get_pixel_color(coords: Sequence[Tuple[int, int]], hwnd: HWND) -> Generator[Tuple[int, int, int], None, None]:
    rect = wintypes.RECT()
    user32.GetClientRect(hwnd, ctypes.byref(rect))
    width = rect.right - rect.left
    height = rect.bottom - rect.top
 
    hdc_src = user32.GetDC(hwnd)
    hdc_dst = gdi32.CreateCompatibleDC(hdc_src)
    bmp = gdi32.CreateCompatibleBitmap(hdc_src, width, height)
    gdi32.SelectObject(hdc_dst, bmp)
 
    gdi32.BitBlt(hdc_dst, 0, 0, width, height, hdc_src, 0, 0, 0x00CC0020)  # SRCCOPY
 
    bmi = BITMAPINFO()
    bmi.bmiHeader.biSize = ctypes.sizeof(BITMAPINFOHEADER)
    bmi.bmiHeader.biWidth = width
    bmi.bmiHeader.biHeight = -height  # 负值表示自底向上
    bmi.bmiHeader.biPlanes = 1
    bmi.bmiHeader.biBitCount = 32
    bmi.bmiHeader.biCompression = 0
 
    buffer = ctypes.create_string_buffer(width * height * 4)
    gdi32.GetDIBits(hdc_dst, bmp, 0, height, buffer, ctypes.byref(bmi), 0)
 
    gdi32.DeleteObject(bmp)
    gdi32.DeleteDC(hdc_dst)
    user32.ReleaseDC(hwnd, hdc_src)
 
    for x, y in coords:
        print(x, y, width, height)
        if 0 <= x < width and 0 <= y < height:
            offset = (y * width + x) * 4
            color = buffer[offset:offset + 4]
            yield color[2], color[1], color[0]  # BGR -> RGB
        else:
            yield (0, 0, 0)
 
 
def get_window_handle(window):
    window_name = window._w
    if not window_name.startswith("."):
        window_name = "." + window_name
    
    hwnd = ctypes.windll.user32.FindWindowW(None, window.title())
    if not hwnd:
        raise ValueError("Cannot get the window handle.")
    return hwnd
 
def download_image(url):
    responjsse = requests.get(url)
    if response.status_code == 200:
        return Image.open(BytesIO(response.content))
    else:
        raise Exception(f"Failed to download image: HTTP {response.status_code}")
 
def display_image_in_label(image):
    photo = ImageTk.PhotoImage(image)
    label = ttk.Label(root, image=photo)
    label.image = photo  # 保持对 PhotoImage 的引用,防止被垃圾回收
    label.pack()
 
 
def show_color(event):
    hwnd = get_window_handle(root)
    x, y = event.x, event.y
    # 注意这里的坐标是相对于窗口的坐标,且传入get_pixel_color的应该是包含多个坐标点的序列
    # 此外,为了高效获取同一个画面多个点的颜色,此处我使用了生成器进行懒加载,因此获取数据时请完整遍历迭代器
    result = get_pixel_color([(x, y)], hwnd)
    colors = [i for i in result]
    print(f"{event.x, event.y}: {colors}")
 
 
if __name__ == "__main__":
    root = tk.Tk()
    width, height = 900, 500
    screenwidth = root.winfo_screenwidth()
    screenheight = root.winfo_screenheight()
    geometry = '%dx%d+%d+%d' % (width, height, (screenwidth 编程China编程- width) / 2, (screenheight - height) / 2)
    root.title("测试样例")
    root.geometry(geometry)
    root.bind("<Motion>", show_color)
 
    image_url = "https://ts1.cn.mm.bing.net/th/id/R-C.475631ce281b88c3cd465761b37c5256?rik=ZFMiTYFwaPypTQ&riu=http%3a%2f%2fpic.ntimg.cn%2ffile%2f20180102%2f21532952_215949247000_2.jpg&ehk=9NnCJ9JG44zfdF2%2fr373s25s68H9vxLvyfMsKgEzAwc%3d&risl=&pid=ImgRaw&r=0"
    try:
        img = download_image(image_url)
        display_image_in_label(img)
    except Exception as e:
        print(f"Error: {e}")
        ttk.Label(root, text="Failed to load image.").pack()
 
    root.mainloop()

4、总结

上述方法比通常使用PIL的Image.ImageGrab方法要高效非常多,因为Image.ImageGrab是基于IO截屏操作的,频繁的IO操作使单纯进行屏幕像素访问十分低效。

而上述方法采用的是BitBlt。BitBlt 是一种高效的位图操作方法,可以将窗口的内容复制到内存设备上下文中,然后通过 GetPixel 或直接访问位图数据来获取像素颜色。就像素访问而言其性能显著强于前者。更多关于Window的API操作详见官方文android档:

Windows GDI) (位图函数 - Win32 apps | Microsoft Learn

到此这篇关于python利用自带模块实现屏幕像素高效操作的文章就介绍到这了,更多相关Python屏幕像素操作内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于Python利用自带模块实现屏幕像素高效操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153369

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详