Python利用自带模块实现屏幕像素高效操作

2025-02-10 04:50

本文主要是介绍Python利用自带模块实现屏幕像素高效操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下...

1、获取屏幕放缩比例

from ctypes import wintypes
import ctypes
 
 
HORZRES = 8
LOGPIXELSX = 118
 
 
def get_scale_factor() -> float:
    user32 = ctypes.windll.user32
    gdi32 = ctypes.windll.gdi32
 
    # 定义 HDC 和 UINT 类型
    HDC = wintypes.HDC
    UINT = wintypes.UINT
 
    # 定义 GetDC 和 GetDeviceCaps 的参数类型和返回类型
    user32.GetDC.argtypes = [wintypes.HWND]
    user32.GetDC.restype = HDC
 
    gdi32.GetDeviceCaps.argtypes = [HDC, UINT]
    gdi32.GetDeviceCaps.restype = wintypes.INT
 
    # 获取设备上下文
    dc = user32.GetDC(None)
    widthScale = gdi32.GetDeviceCaps(dc, HORZRES)
    width = gdi32.GetDeviceCaps(dc, LOGPIXELSX)
    scale = width / widthScale
    return scale

2、获取屏幕指定坐标处像素颜色

import ctypes
from ctypes import wintypes
from typing import Sequence, Generator
 
 
user32 = ctypes.windll.user32
gdi32 = ctypes.windll.gdi32
 
# 定义类型
HWND = wintypes.HWND
HDC = wintypes.HDC
HBITMAP = wintypes.HBITMAP
 
 
class BITMAPINFOHEADER(ctypes.Structure):
    _fields_ = [
        ("biSize", wintypes.dwORD),
        ("biWidth", wintypes.LONG),
        ("biHeight", wintypes.LONG),
        ("biPlanes", wintypes.WORD),
        ("biBitCount", wintypes.WORD),
        ("biCompression", wintypes.DWORD),
        ("biSizeImage", wintypes.DWORD),
        ("biXPelsPerMeter", wintypes.LONG),
        ("biYPelsPerMeter", wintypes.LONG),
        ("biClrUsed", wintypes.DWORD),
        ("biClrImportant", wintypes.DWORD)
    ]
 
class BITMAPINFO(ctypes.Structure):
    _fields_ = [
        ("bmiHeader", BITMAPINFOHEADER),
        ("bmiColors", wintypes.DWORD * 3)
    ]
 
 
def get_pixel_color(coords: Sequence[tuple[int, int]China编程], hwnd: HWND) -> Generator[tuple[int, int, int], None, None]:
    rect = wintypes.RECT()
    user32.GetClientRect(hwnd, ctypes.byref(rect))
    width = rect.right - rect.left
    height = rect.bottom - rect.top
 
    # 创建内存设备上下文
    hdc_src = user32.GetDC(hwnd)
    hdc_dst = gdi32.CreateCompatibleDC(hdc_src)
    bmp = gdi32.CreateCompatibleBitmap(hdc_src, width, height)
    gdi32.SelectObject(hdc_dst, bmp)
 
    # 使用 BitBlt 复制窗口内容到内存设备上下文
    gdi32.BitBlt(hdc_dst, 0, 0, width, height, hdc_src, 0, 0, 0x00CC0020)  # SRCCOPY
 
    # 获取位图信息
    bmi = BITMAPINFO()
    bmi.bmiHeader.biSize = ctypes.sizeof(BITMAPINFOHEADER)
    bmi.bmiHeader.biWidth = width
    bmi.bmiHeader.biHeight = -height  # 负值表示自底向上
    bmi.bmiHeader.biPlanes = 1
    bmi.bmiHeader.biBitCount = 32
    bmi.bmiHeader.biCompression = 0
 
    # 创建缓冲区并获取位图数据
    buffer = ctypes.create_string_buffer(width * height * 4)
    gdi32.GetDIBits(hdc_dst, bmp, 0, height, buffer, ctypes.byref(bmi), 0)
 
    # 释放资源
    androidgdi32.DeleteObject(bmp)
    gdi32.DeleteDC(hdc_dst)
    user32.ReleaseDC(hwnd, hdc_src)
 
    # 遍历指定坐标并返回像素颜色
    for x, y in coords:
        if 0 <= x < width and 0 <= y < height:
            offset = (y * width + x) * 4
            color = buffer[offset:offset + 4]
            yield color[2], color[1], color[0]  # BGR -> RGB
        else:
            yield (0, 0, 0)

3、一个简单的使用案例

from typing import Sequence, Generator, Tuple
from tkinter import ttk
import tkinter as tk
from ctypes import wintypes
import ctypes
import requests
from io import BytesIO
from PIL import Image, ImageTk
 
 
 
 
 
user32 = ctypes.windll.user32
gdi32 = ctypes.windll.gdi32
 
HWND = wintypes.HWND
HDC = wintypes.HDC
HBITMAP = wintypes.HBITMAP
 
 
class BITMAPINFOHEADER(ctypes.Structure):
    _fields_ = [
        ("biSize", wintypes.DWORD),
        ("biWidth", wintypes.LONG),
        ("biHeight", wintypes.LONG),
        ("biPlanes", wintypes.WORD),
        ("biBitCount", wintypes.WORD),
        ("biCompression", wintypes.DWORD),
        ("biSizeImage", wintypes.DWORD),
        ("biXPelsPerMeter", wintypes.LONG),
        ("biYPelsPerMeter", wintypes.LONG),
        ("biClrUsed", wintypes.DWORD),
        ("biClrImportant", wintypes.DWORD)
    ]
 
 
class BITMAPINFO(ctypes.Structure):
    _fields_ = [
        ("bmiHeader", BITMAPINFOHEADER),
        ("bmiColors", wintypes.DWORD * 3)
    ]
 
 
def get_pixel_color(coords: Sequence[Tuple[int, int]], hwnd: HWND) -> Generator[Tuple[int, int, int], None, None]:
    rect = wintypes.RECT()
    user32.GetClientRect(hwnd, ctypes.byref(rect))
    width = rect.right - rect.left
    height = rect.bottom - rect.top
 
    hdc_src = user32.GetDC(hwnd)
    hdc_dst = gdi32.CreateCompatibleDC(hdc_src)
    bmp = gdi32.CreateCompatibleBitmap(hdc_src, width, height)
    gdi32.SelectObject(hdc_dst, bmp)
 
    gdi32.BitBlt(hdc_dst, 0, 0, width, height, hdc_src, 0, 0, 0x00CC0020)  # SRCCOPY
 
    bmi = BITMAPINFO()
    bmi.bmiHeader.biSize = ctypes.sizeof(BITMAPINFOHEADER)
    bmi.bmiHeader.biWidth = width
    bmi.bmiHeader.biHeight = -height  # 负值表示自底向上
    bmi.bmiHeader.biPlanes = 1
    bmi.bmiHeader.biBitCount = 32
    bmi.bmiHeader.biCompression = 0
 
    buffer = ctypes.create_string_buffer(width * height * 4)
    gdi32.GetDIBits(hdc_dst, bmp, 0, height, buffer, ctypes.byref(bmi), 0)
 
    gdi32.DeleteObject(bmp)
    gdi32.DeleteDC(hdc_dst)
    user32.ReleaseDC(hwnd, hdc_src)
 
    for x, y in coords:
        print(x, y, width, height)
        if 0 <= x < width and 0 <= y < height:
            offset = (y * width + x) * 4
            color = buffer[offset:offset + 4]
            yield color[2], color[1], color[0]  # BGR -> RGB
        else:
            yield (0, 0, 0)
 
 
def get_window_handle(window):
    window_name = window._w
    if not window_name.startswith("."):
        window_name = "." + window_name
    
    hwnd = ctypes.windll.user32.FindWindowW(None, window.title())
    if not hwnd:
        raise ValueError("Cannot get the window handle.")
    return hwnd
 
def download_image(url):
    responjsse = requests.get(url)
    if response.status_code == 200:
        return Image.open(BytesIO(response.content))
    else:
        raise Exception(f"Failed to download image: HTTP {response.status_code}")
 
def display_image_in_label(image):
    photo = ImageTk.PhotoImage(image)
    label = ttk.Label(root, image=photo)
    label.image = photo  # 保持对 PhotoImage 的引用,防止被垃圾回收
    label.pack()
 
 
def show_color(event):
    hwnd = get_window_handle(root)
    x, y = event.x, event.y
    # 注意这里的坐标是相对于窗口的坐标,且传入get_pixel_color的应该是包含多个坐标点的序列
    # 此外,为了高效获取同一个画面多个点的颜色,此处我使用了生成器进行懒加载,因此获取数据时请完整遍历迭代器
    result = get_pixel_color([(x, y)], hwnd)
    colors = [i for i in result]
    print(f"{event.x, event.y}: {colors}")
 
 
if __name__ == "__main__":
    root = tk.Tk()
    width, height = 900, 500
    screenwidth = root.winfo_screenwidth()
    screenheight = root.winfo_screenheight()
    geometry = '%dx%d+%d+%d' % (width, height, (screenwidth 编程China编程- width) / 2, (screenheight - height) / 2)
    root.title("测试样例")
    root.geometry(geometry)
    root.bind("<Motion>", show_color)
 
    image_url = "https://ts1.cn.mm.bing.net/th/id/R-C.475631ce281b88c3cd465761b37c5256?rik=ZFMiTYFwaPypTQ&riu=http%3a%2f%2fpic.ntimg.cn%2ffile%2f20180102%2f21532952_215949247000_2.jpg&ehk=9NnCJ9JG44zfdF2%2fr373s25s68H9vxLvyfMsKgEzAwc%3d&risl=&pid=ImgRaw&r=0"
    try:
        img = download_image(image_url)
        display_image_in_label(img)
    except Exception as e:
        print(f"Error: {e}")
        ttk.Label(root, text="Failed to load image.").pack()
 
    root.mainloop()

4、总结

上述方法比通常使用PIL的Image.ImageGrab方法要高效非常多,因为Image.ImageGrab是基于IO截屏操作的,频繁的IO操作使单纯进行屏幕像素访问十分低效。

而上述方法采用的是BitBlt。BitBlt 是一种高效的位图操作方法,可以将窗口的内容复制到内存设备上下文中,然后通过 GetPixel 或直接访问位图数据来获取像素颜色。就像素访问而言其性能显著强于前者。更多关于Window的API操作详见官方文android档:

Windows GDI) (位图函数 - Win32 apps | Microsoft Learn

到此这篇关于python利用自带模块实现屏幕像素高效操作的文章就介绍到这了,更多相关Python屏幕像素操作内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于Python利用自带模块实现屏幕像素高效操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153369

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP