轻松掌握python的dataclass让你的代码更简洁优雅

2025-01-06 15:50

本文主要是介绍轻松掌握python的dataclass让你的代码更简洁优雅,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默...

dataclass是从python3.7版本开始,作为标准库中的模块被引入。
随着Python版本的不断更新,dataclass也逐步发展和完善,为Python开发者提供了更加便捷的数据类创建和管理方式。

dataclass的主要功能在于帮助我们简化数据类的定义过程。
本文总结了几个我平时使用较多dataclass技巧

1. 传统的类定义方式

首先,从平时量化分析的场景中简化一个关于&nbsphpp;币交易 的类用来演示。
简化之后,这里只保留5个字段,分别是交易ID交易对价格是否成功参与交易的地址列表

class CoinTrans:
    def __init__(
        self,
        id: str,
        symbol: str,
        price: float,
        is_success: bool,
        addrs: list,
    ) -> None:
        self.id = id
        self.symbol = symbol
        self.price = price
        self.addrs = addrs
        self.is_success = is_success

Python传统定义类的方式,如上通过__init__函数来初始化对象的各个属性。

通过这个类构造对象并打印:

if __name__ == "__main__":
    coin_trans = CoinTrans("id01", "BTC/USDT", "71000", True, ["0x1111", "0x2222"])
    print(coin_trans)

运行结果:

<__main__.CoinTrans object at 0x0000022A891FADD0>

这里只是打印出对象的地址,并没有按照我们期望的那样打印对象各个属性的值。

传统的类中,我们如果希望打印出可读的结果,需要自己去实现__str__函数。

# 在上面的 CoinTrans 类中添加下面的方法
def __str__(self) -> str:
    return f"交易信息:{self.id}, {self.symbol}, {self.price}, {self.addrs}, {self.is_success}"

再次运行,结果如下:

交易信息:id01, BTC/USDT, 71000, ['0x1111', '0x2222'], True

2. dataclass装饰器定义类

下面看看使用dataclass装饰器来定义上面同样的类有多简单。

from dataclasses import dataclass
@dataclass
class CoinTrans:
    id: str
    symbol: str
    price: float
    is_success: bool
    addrs: list

再次运行:

if __name__ == "__main__":
    coin_trans = CoinTrans("id01", "BTC/USDT", "71000", True, ["0x1111", "0x2222"])
    print(coin_trans)

得到如下结果:

CoinTrans(id='id01', symbol='BTC/USDT', price='71000', is_success=True, addrs=['0x1111', '0x2222'])

不需要__init__,也不需要__str__,只要通过 @dataclass装饰之后,就可以打印出对象的具体内容。

2.1. 默认值

dataclass装饰器的方式来定义类,设置默认值很简单,直接在定义属性时就可以设置。

@dataclass
class CoinTrans:
    id: str = "id01"
    symbol: str = "BTC/USDT"
    price: float = "71000.8"
    is_success: bool = True
    addrs: list[str] =javascript ["0x1111javascript", "0x2222"]
if __name__ == "__main__":
    coin_trans = CoinTrans()
    print(coin_trans)

运行之后发现,在addrs属性那行会报错:

ValueError: mutable default <class 'list'> for field addrs is not allowed: use default_factory

大概的意思就是,list作为一种可变的类型(引用类型,会有被其他对象意外修改的风险),不能直接作为默认值,需要用工厂方法来产生默认值。
其他字符串,数值,布尔类型的数据则没有这个问题。

我们只要定义个函数来产生此默认值即可。

def gen_list():
    return ["0x1111", "0x2222"]
@dataclass
class CoinTrans:
    id: str = "id01"
    symbol: str = "BTC/USDT"
    price: float = "71000.8"
    is_success: bool = True
    addrs: list[str] = field(default_factory=gen_list)
if __name__ == "__main__":
    coin_trans 编程= CoinTrans()
    print(coin_trans)

再次运行,可以正常执行:

CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8', is_success=True, addrs=['0x1111', '0x2222']

2.2. 隐藏敏感信息

我们打印对象信息的时候,有时执行打印其中几个属性的信息,涉及敏感信息的属性不希望打印出来。
比如,上面的对象,如果不想打印出is_successaddrs的信息,可以设置repr=False

@dataclass
class CoinTrans:
    id: str = "id01"
    symbol: str = "BTC/USDT"
    price: float = "71000.8"
    is_success: bool = field(default=True, repr=False)
    addrs: list[str] = field(default_factory=gen_list, repr=False)

再次运行后显示:

CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')

2.3. 只读对象

数据分析时,大部分下情况下,原始数据读取之后是不能修改的。
这种情况下,我们可以用dataclassfrozen属性来设置数据类只读,防止不小心篡改了数据。

未设置frozen属性之前,可以随意修改对象的属性,比如:

if __name__ == "__main__":
    coin_trans = CoinTrans()
    print(f"修改前: {coin_trans}")
    coin_trans.symbol = "ETH/USDT"
    print(f"修改后: {coin_trans}")

运行结果:

修改前: CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')
修改后: CoinTrans(id='id01', symbol='ETH/USDT', price='71000.8')

设置frozen属性之后,看看修改属性值会怎么样:

@dataclass(frozen=True)
class CoinTrans:
    id: str = "id01"
    #... 省略 ...

再次运行,会发现修改属性会触发异常。

修改前: CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')
Traceback (most recent call last):
  File "D:\projects\python\samples\data_classes\main.py", line 66, in <module>
    coin_trans.symbol = "ETH/USDT"
    ^^^^^^^^^^^^^^^^^
  File "<string>", line 4, in __setattr__
dataclasses.FrozenInstanceError: cannot assign to field 'symbol'

2.4. 转化为元组和字典

最后,dataclasses模块还提供了两个函数可以很方便的将数据类转换为元组字典
这在和其他分析程序交互时非常有用,因为和其他程序交互时,参数一般都用元组或者字典这种简单通用的结构,
而不会直接用自己定义的数据类。

from dataclasses import dataclass, field, astuple, asdict
if __name__ == "__main__":
    coin_trans = CoinTrans()
    print(astuple(coin_trans))
    jsprint(asdict(coin_trans))

运行结果:

('id01', 'BTC/USDT', '71000.8', True, ['0x1111', '0x2222'])
{'id': 'id01', 'symbol': 'BTC/USDT', 'price': '71000.8', 'is_success': True, 'addrs': ['0x1111', '0x2222']}

3. 总结

Python中,数据类主要用于存储数据,并通常包含属性和方法来操作这些数据。
然而,在定义数据类时,我们通常需要编写一些重复性的代码,如构造函数、属性访问器和字符串表示等。
dataclass装饰器的出现,使得这些通用方法的生成变得自动化,从而极大地简化了数据类的定义过程。

总的来说,dataclass通过简化数据类的创建和管理过程,提高了开发效率,是我们在数据分析时的一个非常有用的工具。

到此这篇关于掌握python的dataclass,让你的代码更简洁优雅的文章就介绍到这了,更多相关python dataclass内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于轻松掌握python的dataclass让你的代码更简洁优雅的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152948

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar