使用 Python 和 LabelMe 实现图片验证码的自动标注功能

2025-01-01 03:50

本文主要是介绍使用 Python 和 LabelMe 实现图片验证码的自动标注功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa...

使用 Python 和 LabelMe 实现图片验证码的自动标注

在处理图片验证码时,手动标注是一项耗时且枯燥的工作。本文将介绍如何使用 Python 和 LabelMe 实现图片验证码的自动标注。通过结合 PaddleOCR 实现自动识别,再生成 LabelMe 格式的标注文件,大幅提升工作效率。

环境准备

必备工具

  • Python 3.7+
  • PaddleOCR(支持文字识别)
  • OpenCV(图像处理)
  • LabelMe(标注工具)

安装依赖

使用以下命令安装所需库:

pip install paddleocr labelme opencv-python

实现自动标注

自动标注分为以下几个步骤:

  • 加载图片:读取图片文件,确保格式正确。
  • 图像预处理:对验证码图片进行灰度化和二值化处理,优化识别效果。
  • OCR 识别:使用 PaddleOCR 获取验证码中的文字和位置。
  • 生成标注文件:根据 OCR 结果创建符合 LabelMe 格式的 jsON 文件。

核心代码实现

以下是完整的自动标注脚本

import os
import cv2
from paddleocr import PaddleOCR
def auto_label_image(image_path, output_path):
    # 检查文件是否存在
    if not os.path.exists(image_path):
        print(f"Error: File not found: {image_path}")
        return
    # 加载图像
    image = cv2.imread(image_path)
    if image is None:
        print(f"Error: Failed to load image. Check the file path or format: {image_path}")
    www.chinasem.cn    return
    # 图像预处理
    gray_image = China编程cv2.cvtColor(androidimage, cv2.COLOR_BGR2GRAY)
    _, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)
    # 保存预处理后的图片(可选,用于调试)
    preprocessed_path = os.path.join(output_path, "processed_image.jpg")
    cv2.imwrite(preprocessed_path, binary_image)
    # 初始化 OCR
    ocr = PaddleOCR(use_angle_cls=True, lang='en')
    # OCR 识别
    results = ocr.ocr(preprocessed_path)
    if not results or not results[0]:
        print(f"No text detected in the image: {image_path}")
        return
    # 获取图像尺寸
    image_height, image_width, _ = image.shape
    # 构建标注 JSON
    label_data = {
        "version": "4.5.7",
        "flags": {},
        "shapes": [],
        "imagePath": os.path.basename(image_path),
        "imageData": None,
        "imageHeight": image_height,
        "imageWidth": image_width,
    }
    # 遍历 OCR 结果
    for line in results[0]:
        points = line[0]  # 字符位置 [左上, 右上, 右下, 左下]
        text = line[1][0]  # 识别的文本
        shape = {
            "label": text,
            "points": [points[0], points[2]],  # 左上角和右下角
            "group_id": None,
            "shappythone_type": "rectangle",
            "flags": {}
        }
        label_data["shapes"].append(shape)
    # 保存标注 JSON
    json_path = os.path.join(output_path, os.path.basename(image_path).replace('.jpg', '.json'))
    with open(json_path, 'w') as f:
        import json
        json.dump(label_data, f, indent=4)
    print(f"Saved LabelMe annotation: {json_path}")
# 示例
image_path = r"C:\Users\wangzq\Desktop\images\captcha.jpg"
output_path = "./annotations"
os.makedirs(output_path, exist_ok=True)
auto_label_image(image_path, output_path)

核心逻辑解析

图像预处理

为了提高 OCR 的识别精度,对验证码图片进行灰度化和二值化处理:

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary_image = cv2.threshold(gray_image, 128, 255, cv2.THRESH_BINARY)

二值化处理可以去除背景噪声,使字符更加清晰。

OCR 识别

使用 PaddleOCR 对图片进行文字检测和识别,返回检测框和文字内容:

ocr = PaddleOCR(use_angle_cls=True, lang='en')
results = ocr.ocr(preprocessed_path)

如果 results 为空,说明 OCR 未检测到任何文本。

生成标注文件

根据 OCR 结果,生成 LabelMe 格式的标注文件,关键字段包括:

  • shapes:标注框信息,包括位置和对应文字。
  • imageHeight 和 imageWidth:图像的尺寸。

运行结果

  • 输出预处理图片:在指定路径下保存经过预处理的图片(processed_image.jpg)。
  • 生成标注文件:在 output_path 目录下生成与图片同名的 .json 文件。
  • 无文本检测提示:如果未检测到任何文本,提示 No text detected in the image

扩展与优化

模型适配

如果验证码中的字符种类较复杂,可以考虑训练一个专用模型,替代通用的 PaddleOCR。

批量处理

针对多张图片验证码,可以将脚本扩展为批量处理模式:

for image_file in os.listdir(input_folder):
    image_path = os.path.join(input_folder, image_file)
    auto_label_image(image_path, output_path)

标注类型扩展

目前代码仅支持矩形框标注。如果需要支持多边形标注,可以调整 shape_typepolygon 并提供相应点坐标。

总结

本文介绍了如何使用 Python 和 LabelMe 自动标注图片验证码,从图像预处理到生成标注文件的完整流程。通过 PaddleOCR 的结合,可以快速实现验证码字符的自动标注,节省大量时间和精力。

测试

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

运行完脚本,出来json

{
    "version": "4.5.7",
    "flags": {},
    "shapes": [
        {
            "label": "OZLQ",
            "points": [
                [
                    6.0,
                    1.0
                ],
                [
                    68.0,
                    21.0
                ]
            ],
            "group_id": null,
            "shape_type": "rectangle",
            "flags": {}
        }
    ],
    "imagePath": "captcha.png",
    "imageData": null,
    "imageHeight": 22,
    "imageWidth": 76
}
{
    "version": "4.5.7",
    "flags": {},
    "shapes": [
        {
            "label": "3081",
            "points": [
                [
                    6.0,
                    1.0
                ],
                [
                    63.0,
                    21.0
                ]
            ],
            "group_id": null,
            "shape_type": "rectangle",
            "flags": {}
        }
    ],
    "imagePath": "captcha.png",
    "imageData": null,
    "imageHeight": 22,
    "imageWidth": 76
}

目前较为复杂还需要深度研究

到此这篇关于使用 Python 和 LabelMe 实现图片验证码的自动标注的文章就介绍BGWCOwM到这了,更多相关Python图片验证码自动标注内容请搜索编程China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于使用 Python 和 LabelMe 实现图片验证码的自动标注功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152878

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali