Python中的异步:async 和 await以及操作中的事件循环、回调和异常

2024-12-29 03:50

本文主要是介绍Python中的异步:async 和 await以及操作中的事件循环、回调和异常,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python中的异步:async和await以及操作中的事件循环、回调和异常》在现代编程中,异步操作在处理I/O密集型任务时,可以显著提高程序的性能和响应速度,Python提供了asyn...

引言

在现代编程中,异步操作是一个非常重要的概念,尤其是在处理 I/O 密集型任务时。使用异步操作可以显著提高程序的性能和响应速度。Python 提供了 asyncawait 关键字,使得编写异步代码变得更加直观和简洁。在这篇文章中,我们将深入探讨 Python 的异步操作,并通过实际代码示例来说明其使用方法。

什么是异步操作?

异步操作是一种非阻塞的编程方式,它允许程序在等待某个操作(如 I/O 操作)完成的同时继续执行其他任务。与同步操作不同,异步操作不会阻塞主线程,而是通过回调、事件循环等机制来实现并发处理。

Python android中的异步编程基础

asyncawait 关键字

  • async:定义一个异步函数。一个函数只需在 def 前面加上 async 关键字,就变成了异步函数。
  • await:等待一个异步操作的完成。只能在异步函数中使用。

asyncio 模块

asyncio 是 Python 的标准库模块,提供了对异步 I/O、事件循环、任务调度等功能的支持。

import asyncio

理论与代码示例

定义异步函数

首先,我们来定义一个简单的异步函数:

import asyncio

async def say_hello():
    print("Hello")
    await asyncio.sleep(1)  # 模拟异步操作
    print("World")

# 异步函数不会立即执行,需要在事件循环中运行

执行异步函数

要运行异步函数,需要在事件循环中调用它们。asyncio.run 是一种简洁的方式来运行异步函数。

async def main():
    await say_hello()

# 使用 asyncio.run() 启动事件循环并执行异步函数
if __name__ == "__main__":
    asyncio.run(main())

异步 I/O 操作示例

让我们编写一个更实际的示例,展示如何使用异步操作进行 I/O 密集型任务,如网络请求。

import asyncio
import aiohttp  # 需要安装 aiohttp 库: pip install aiohttp

async def fetch_url(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main():
    urls = [
        "https://www.example.com",
        "https://www.python.org",
        "https://www.asyncio.org"
    ]
    
    async with aiohttp.ClientSession() as session:
        tasks = [fetch_url(session, url) for url in urls]
        results = await asyncio.gather(*tasks)
        
        for url, content in zip(urls, results):
            print(f"URL: {url}, Content Length: {len(content)}")

if __name__ == "__main__":
    asyncio.run(main())

在这个示例中:

  1. fetch_url:这是一个异步函数,用于从指定的 URL 获取内容。
  2. main:在 main 函数中,我们定义了一组 URL,并为每个 URL 创建一个异步任务。
  3. asyncio.gather:该函数并发地运行所有任务,并等待它们全部完成。
  4. aiohttp.ClientSession:这是一个异步 HTTP 客户端会话,用于发送和接收 HTTP 请求。

高级用法:超时和取消任务

异步编程的一个重要优势是能够设置超时和取消任务。我们可以使用 asyncio.wait_for 实现这一点。

import asyncio

async def long_running_task():
    await asyncio.sleep(10)
    return "Task completed"

async def main():
    try:
        result = await asyncio.wait_for(long_running_task(), timeout=5)
        print(result)
    except asyncio.TimeoutError:
        print("The task took too long and was cancelled.")

if __name__ == "__main__":
    asyncio.run(main())

在这个示例中,如果 long_running_task 在 5 秒内没有完成,则会抛出 asyncio.TimeoutError 异常。

异步编程的优势与局限性

优势

  • 高效利用资源:异步编程可以在等待 I/O 操作完成时继续执行其他任务,从而更高效地利用 CPU 资源。
  • 提高响应速度:对于 I/O 密集型任务,异步操作可以显著提高程序的响应速度。

局限性

  • 复杂性增加:异步编程相对于同步编程来说更加复杂,需要处理事件循环、回调和异常等。
  • 调试困难:异步代码的调试和错误追踪相对较难。

事件循环、回调和异常

事件循环

理论解释

事件循环是异步编程的核心,它不断检查和处理挂起的任务和 I/O 事件。Python 的 asyncio 模块提供了对事件循环的支持。事件循环管理着所有异步任务的执行,并在任务之间切换,从而实现并发。

具体代码

import asyncio

async def say_hello():
China编程    print("Hello")
    await asyncio.sleep(1)
    print("World")

async def main():
    # 获取事件循环
    loop = asyncio.get_event_loop()
    
    # 创建任务
    task = loop.create_task(say_hello())
    
    # 运行任务
    await task

# 启动事件循环并执行主函数
if __name__ == "__main__":
    asyncio.run(main())

在这个示例中,asyncio.get_event_loop() 获取了当前的事件循环,loop.create_task() 创建了一个任务并添加到事件循环中,await task 等待任务完成。

回调

理论解释

回调函数是指在特定事件发生时自动调用的函数。在异步编程中,回调函数通常用于处理异步任务的结果或异常。asyncio 提供了多种方式来设置回调函数,包括 FutureTask 对象的 add_done_callback 方法。

具体代码

import asyncio

async def slow_operation():
    await asyncio.sleep(2)
    return "Operation Completed"

def callback(future):
    print(future.result())

async def main():
    loop = asyncio.get_event_loop()
    task = loop.create_task(slow_operation())
    task.add_done_callback(callback)
    await task

if __name__ == "__main__":
    asyncio.run(main())

在这个示例中,我们定义了一个名为 callback 的回调函数,用于处理 slow_operation 异步任务的结果。task.add_done_callback(callback) 将回调函数与任务关联,一旦任务完成,回调函数将被自动调用并打印结果。

异常处理

理论解释

在异步编程中,处理异常是至关重要的。任务在运行过程中可能会抛出异常,我们需要捕获和处理这些异常,以确保程序的稳定性。asyncio 提供了多种方式来处理异步任务中的异常。

具体代码

import asyncio

async def error_prone_operation():
    await asyncio.sleep(1)
    raise ValueError("An error occurred")

async def main():
    try:
        await error_prone_operation()
    except ValueError as e:
        print(f"Caught an exception: {e}")

if __name__ == "__main__":
    asyncio.run(main())

在这个示例中,error_prone_operation 异步函数在执行过程中可能会抛出 ValueError 异常。在 main 函数中,我们使用 try...except 块来捕获和处理这个异常,确保程序不会因为未捕获的异常而崩溃。

异步任务中的异常处理

除了直接在异步函数中捕获异常外,我们还可以在任务完成后检查异常。asyncio.Task 对象的 exception 方法可以用于检查任务是否抛出了异常。

import asyncio

async def error_prone_operation():
    await asyncio.sleep(1)
    raise ValueError("An error occurred")

async def main():
    loop = asyncio.get_event_loop()
    task = loop.create_task(error_prone_operation())
    
    try:
        await task
    except ValueError as e:
        print(f"Caught an exception: {e}")
    
    # 或者在任务完成后检查异常
    if task.exception():
        print(f"Task raised an exception: {task.exception()}")

if __name__ == "__main__":
    asyncio.run(main())

在这个示例中,我们首先在 try...except 块中捕获异常,然后在任务完成后通过 task.exception() 方法检查任务是否抛出了异常。

超时处理

在某些情况下,异步操作可能需要设置超时,以避免长时间等待。asyncio.wait_for 函数可以用于设置异步操作的超时时间。

import asyncio

async def long_running_task():
    await asyncio.sleep(10)
    return "Task completed"

async def main():
    try:
        result = await asyncio.wait_for(long_running_task(), timeout=5)
        print(result)
    except asyncio.TimeoutError:
        print("The task took too long and was cancelled.")

if __name__ == "__main__":
    asyncio.run(main())

在这个示例中,如果 long_running_task 在 5 秒内没有完成,则会抛出 asyncio.TimeoutError 异常,我们可以捕获并处理这个异常。

结论

异步编程是 Python 中处理并发和 I/O 密集型任务的一种强大工具。通过使用 asyncawaitsGTwpf 关键字,以及 asyncio 模块,我们可以编写出高效且响应迅速的异步代码。然而,异步编程也带来了更高的复杂性,因此在使用时需要仔细权衡其优势和局限性。

通过了解事件循环、回调和异常处理,我们可以更好地掌握 Python 中的异步编程。事件循环是异步编程的核心,负责管理任务的调度和执行;回调函数用于处理任务完成时的结果或异常;而异常处理则确保了程序的稳定性和健壮性。

希望通过本文的详细解释和代码示例,你能够深入理解 Python 异步编程的底层原理和实际应用。在实际项目中,合理使用这些机制,可以显著提高程序编程的性能和响应速度。

到此这篇关于Python中的异步:async 和 await以及操作中的事件循环、回调和异常的文章就http://www.chinasem.cn介绍到这了,更多相关Python中的异步操作:async 和 await内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于Python中的异步:async 和 await以及操作中的事件循环、回调和异常的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152831

相关文章

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum