2024.9.8 TCP/IP协议学习笔记

2024-09-09 04:36
文章标签 ip 学习 协议 笔记 tcp 2024.9

本文主要是介绍2024.9.8 TCP/IP协议学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.所谓的层就是数据交换的深度,电脑点对点就是单层,物理层,加上集线器还是物理层,加上交换机就变成链路层了,有地址表,路由器就到了第三层网络层,每个端口都有一个mac地址
2.A 给 C 发数据包,怎么知道是否要通过路由器转发呢?答案:子网
3.将源 IP 与目的 IP 分别同这个子网掩码进行与运算****,相等则是在一个子网,不相等就是在不同子网
4.A 如何知道,哪个设备是路由器?答案:在 A 上要设置默认网关
5.ARP(网络层和数据链路层的桥梁):虽然 ARP 是用来查询 MAC 地址的,但它是网络层协议。它帮助电脑通过已知的 IP 地址找到对应的 MAC 地址,便于数据链路层完成传输。
6.TCP传输层的三次握手建立连接,四次挥手释放连接
7.问题(1):为什么关闭连接的需要四次挥手,而建立连接却只要三次握手呢?
关闭连接时,被动断开方在收到对方的FIN结束请求报文时,很可能业务数据没有发送完成,并不能立即关闭连接,被动方只能先回复一个ACK响应报文,告诉主动断开方:“你发的FIN报文我收到了,只有等到我所有的业务报文都发送完了,我才能真正的结束,在结束之前,我会发你FIN+ACK报文的,你先等着”。所以,被动断开方的确认报文,需要拆开成为两步,故总体就需要四步挥手。
而在建立连接场景中,Server端的应答可以稍微简单一些。当Server端收到Client端的SYN连接请求报文后,其中ACK报文表示对请求报文的应答,SYN报文用来表示服务端的连接也已经同步开启了,而ACK报文和SYN报文之间,不会有其他报文需要发送,故而可以合二为一,可以直接发送一个SYN+ACK报文。所以,在建立连接时,只需要三次握手即可。

问题(2):为什么连接建立的时候是三次握手,可以改成两次握手吗?
三次握手完成两个重要的功能:一是双方都做好发送数据的准备工作,而且双方都知道对方已准备好;二是双方完成初始SN序列号的协商,双方的SN序列号在握手过程中被发送和确认。如果把三次握手改成两次握手,可能发生死锁。两次握手的话,缺失了Client的二次确认ACK帧,假想的TCP建立的连接时二次挥手
在假想的TCP建立的连接时二次握手过程中,Client发送Server发送一个SYN请求帧,Server收到后发送了确认应答SYN+ACK帧。按照两次握手的协定,Server认为连接已经成功地建立了,可以开始发送数据帧。这个过程中,如果确认应答SYN+ACK帧在传输中被丢失,Client没有收到,Client将不知道Server是否已准备好,也不知道Server的SN序列号,Client认为连接还未建立成功,将忽略Server发来的任何数据分组,会一直等待Server的SYN+ACK确认应答帧。而Server在发出的数据帧后,一直没有收到对应的ACK确认后就会产生超时,重复发送同样的数据帧。这样就形成了死锁。

问题(3):为什么主动断开方在TIME-WAIT状态必须等待2MSL的时间?
原因之一:主动断开方等待2MSL的时间,是为了确保两端都能最终关闭。假设网络是不可靠的,被动断开方发送FIN+ACK报文后,其主动方的ACK响应报文有可能丢失,这时候的被动断开方处于LAST-ACK状态的,由于收不到ACK确认被动方一直不能正常的进入CLOSED状态。在这种场景下,被动断开方会超时重传FIN+ACK断开响应报文,如果主动断开方在2MSL时间内,收到这个重传的FIN+ACK报文,会重传一次ACK报文,后再一次重新启动2MSL计时等待,这样,就能确保被动断开方能收到ACK报文,从而能确保被动方顺利进入到CLOSED状态。只有这样,双方都能够确保关闭。反过来说,如果主动断开方在发送完ACK响应报文后,不是进入TIME_WAIT状态去等待2MSL时间,而是立即释放连接,则将无法收到被动方重传的FIN+ACK报文,所以不会再发送一次ACK确认报文,此时处于LAST-ACK状态的被动断开方,无法正常进入到CLOSED状态。

这篇关于2024.9.8 TCP/IP协议学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150176

相关文章

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Linux查询服务器 IP 地址的命令详解

《Linux查询服务器IP地址的命令详解》在服务器管理和网络运维中,快速准确地获取服务器的IP地址是一项基本但至关重要的技能,下面我们来看看Linux中查询服务器IP的相关命令使用吧... 目录一、hostname 命令:简单高效的 IP 查询工具命令详解实际应用技巧注意事项二、ip 命令:新一代网络配置全

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

Linux之UDP和TCP报头管理方式

《Linux之UDP和TCP报头管理方式》文章系统讲解了传输层协议UDP与TCP的核心区别:UDP无连接、不可靠,适合实时传输(如视频),通过端口号标识应用;TCP有连接、可靠,通过确认应答、序号、窗... 目录一、关于端口号1.1 端口号的理解1.2 端口号范围的划分1.3 认识知名端口号1.4 一个进程

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb