图解TCP三次握手|深度解析|为什么是三次

2024-09-09 04:04

本文主要是介绍图解TCP三次握手|深度解析|为什么是三次,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

这篇文章我们来讲解析 TCP三次握手
在这里插入图片描述

TCP 报文段

传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。

我们再来看一下TCP报文段的组成结构
在这里插入图片描述

TCP 三次握手

过程

假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端被打开链接。
一开始B的TCP服务器进程先创建传输控制块TCB,准备接受客户进程的链接请求,然后服务器进程就处于LISTEN收听状态,等待A的连接请求。

  1. 然后客户端进程首先创建传输控制模块TCB。向服务端发出连接请求报文段,这是首部当中的同步位SYN=1,同时选择一个初始序号seq=x。TCP规定,SYN报文段(即SYN=1的报文段)不能写数据,但要消耗掉一个序号。
    在这里插入图片描述

  2. 这时候客户端就进入了同步已发送的状态。服务端收到连接请求报文段后,如果同意建立连接,则向客户端发送确认,在确认报文段中把SYN位和ACK位置都置为1,确认号为ack+1,同时也为自己选择一个初始序号y。同样的这个报文段也是不能写数据的,但同时要消耗掉一个序号。这时服务端进入了同步收到状态。
    在这里插入图片描述

  3. 客户端收到服务端的确认之后,向服务端给出确认。确认报文段的ACK置1,确认号ack=y+1,而自己的seq=x+1。ACK报文段是可以携带数据的,但如果不携带数据则不消耗序号,在这种情况下,下一个数据报文段的序号仍为seq=x+1

在这里插入图片描述

这时候TCP已经建立了。两端都进行入了已经建立连接的阶段状态

为什么是三次握手呢?

TCP是全双工,并且为了证明双方的收发能力只是一个表面的现象。更深层是为了防止 已失效的连接请求报文段突然又传送到了B 因而产生重复连接或者资源浪费

我们来分析一下:

  1. 首先是正常情况:A发出连接请求,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。
    在这里插入图片描述
    A共发送了两次连接报文请求,其中第一个丢失,第二个到达了B,没有已失效的连接请求报文段
    在这里插入图片描述

  2. 接下来是坏的情况:A发出的第一个连接请求报文段并没有丢失,而是在某些网络长时间滞留了,以致于到连接释放以后的某个时间才到达B。本来这是一个早已失效的报文段,但B收到此失效的连接请求报文段后,就误认为是A又发出一次新的连接请求。于是B就向A发出确认报文段,同意报文连接。

在这里插入图片描述
但是由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。 但B以为新的运输连接已经建立了,并一直等待A发送数据来,B的许多资源就这样白白浪费了!

  1. 又有一种情况是:A接受了这次连接,所以又进行一次不必要的连接。
    在这里插入图片描述

如果缺乏第三次握手,服务器无法知道客户端是否正确接收到了建立连接的ACK确认信号。因此,如果消息在网络中出现滞留,客户端将一直重复发送SYN请求(因为有消息滞留,意味着有客户端没收到响应,认为超时,所以重传了),导致服务器不断建立新的连接。这将增加网络拥塞和延迟,并对整个网络性能产生负面影响。

有同学可能会疑惑,怎么A有时候接受,有时候又拒绝??
这是因为现实的网络是很复杂的,很多情况并不是按照我们所设想或者所规划的进行,任何情况都有可能会发生。

三次握手无懈可击?

并不是无限可击。SYN-Flood攻 击是当前网络上最为常见的DDoS攻击,也是最为经典的拒绝服务攻击。

攻击者首先伪造地址对服务器发起SYN请求,服务器回应(SYN+ACK)包,而真实的IP会认为,我没有发送请求,不作回应。

在这里插入图片描述

服务器没有收到回应,这样的话,服务器不知道(SYN+ACK)是否发送成功,默认情况下会重试5次(tcp_syn_retries)。这样的话,对于服务器的内存,带宽都有很大的消耗。攻击者如果处于公网,可以伪造IP的话,对于服务器就很难根据IP来判断攻击者,给防护带来很大的困难。

那改进成四次握手?

三次握手有的缺陷,就算N次握手,也一样会有相关问题的出现!三次握手是在连接顺利的基础上最大地合理利用网络资源

参考

[1] https://www.cnblogs.com/guoxiaoyu/p/17716038.html
[2] https://blog.csdn.net/u011037593/article/details/115024040

这篇关于图解TCP三次握手|深度解析|为什么是三次的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150106

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?