图解TCP三次握手|深度解析|为什么是三次

2024-09-09 04:04

本文主要是介绍图解TCP三次握手|深度解析|为什么是三次,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

这篇文章我们来讲解析 TCP三次握手
在这里插入图片描述

TCP 报文段

传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。

我们再来看一下TCP报文段的组成结构
在这里插入图片描述

TCP 三次握手

过程

假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端被打开链接。
一开始B的TCP服务器进程先创建传输控制块TCB,准备接受客户进程的链接请求,然后服务器进程就处于LISTEN收听状态,等待A的连接请求。

  1. 然后客户端进程首先创建传输控制模块TCB。向服务端发出连接请求报文段,这是首部当中的同步位SYN=1,同时选择一个初始序号seq=x。TCP规定,SYN报文段(即SYN=1的报文段)不能写数据,但要消耗掉一个序号。
    在这里插入图片描述

  2. 这时候客户端就进入了同步已发送的状态。服务端收到连接请求报文段后,如果同意建立连接,则向客户端发送确认,在确认报文段中把SYN位和ACK位置都置为1,确认号为ack+1,同时也为自己选择一个初始序号y。同样的这个报文段也是不能写数据的,但同时要消耗掉一个序号。这时服务端进入了同步收到状态。
    在这里插入图片描述

  3. 客户端收到服务端的确认之后,向服务端给出确认。确认报文段的ACK置1,确认号ack=y+1,而自己的seq=x+1。ACK报文段是可以携带数据的,但如果不携带数据则不消耗序号,在这种情况下,下一个数据报文段的序号仍为seq=x+1

在这里插入图片描述

这时候TCP已经建立了。两端都进行入了已经建立连接的阶段状态

为什么是三次握手呢?

TCP是全双工,并且为了证明双方的收发能力只是一个表面的现象。更深层是为了防止 已失效的连接请求报文段突然又传送到了B 因而产生重复连接或者资源浪费

我们来分析一下:

  1. 首先是正常情况:A发出连接请求,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。
    在这里插入图片描述
    A共发送了两次连接报文请求,其中第一个丢失,第二个到达了B,没有已失效的连接请求报文段
    在这里插入图片描述

  2. 接下来是坏的情况:A发出的第一个连接请求报文段并没有丢失,而是在某些网络长时间滞留了,以致于到连接释放以后的某个时间才到达B。本来这是一个早已失效的报文段,但B收到此失效的连接请求报文段后,就误认为是A又发出一次新的连接请求。于是B就向A发出确认报文段,同意报文连接。

在这里插入图片描述
但是由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。 但B以为新的运输连接已经建立了,并一直等待A发送数据来,B的许多资源就这样白白浪费了!

  1. 又有一种情况是:A接受了这次连接,所以又进行一次不必要的连接。
    在这里插入图片描述

如果缺乏第三次握手,服务器无法知道客户端是否正确接收到了建立连接的ACK确认信号。因此,如果消息在网络中出现滞留,客户端将一直重复发送SYN请求(因为有消息滞留,意味着有客户端没收到响应,认为超时,所以重传了),导致服务器不断建立新的连接。这将增加网络拥塞和延迟,并对整个网络性能产生负面影响。

有同学可能会疑惑,怎么A有时候接受,有时候又拒绝??
这是因为现实的网络是很复杂的,很多情况并不是按照我们所设想或者所规划的进行,任何情况都有可能会发生。

三次握手无懈可击?

并不是无限可击。SYN-Flood攻 击是当前网络上最为常见的DDoS攻击,也是最为经典的拒绝服务攻击。

攻击者首先伪造地址对服务器发起SYN请求,服务器回应(SYN+ACK)包,而真实的IP会认为,我没有发送请求,不作回应。

在这里插入图片描述

服务器没有收到回应,这样的话,服务器不知道(SYN+ACK)是否发送成功,默认情况下会重试5次(tcp_syn_retries)。这样的话,对于服务器的内存,带宽都有很大的消耗。攻击者如果处于公网,可以伪造IP的话,对于服务器就很难根据IP来判断攻击者,给防护带来很大的困难。

那改进成四次握手?

三次握手有的缺陷,就算N次握手,也一样会有相关问题的出现!三次握手是在连接顺利的基础上最大地合理利用网络资源

参考

[1] https://www.cnblogs.com/guoxiaoyu/p/17716038.html
[2] https://blog.csdn.net/u011037593/article/details/115024040

这篇关于图解TCP三次握手|深度解析|为什么是三次的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150106

相关文章

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应