图解TCP三次握手|深度解析|为什么是三次

2024-09-09 04:04

本文主要是介绍图解TCP三次握手|深度解析|为什么是三次,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

这篇文章我们来讲解析 TCP三次握手
在这里插入图片描述

TCP 报文段

传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。

我们再来看一下TCP报文段的组成结构
在这里插入图片描述

TCP 三次握手

过程

假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端被打开链接。
一开始B的TCP服务器进程先创建传输控制块TCB,准备接受客户进程的链接请求,然后服务器进程就处于LISTEN收听状态,等待A的连接请求。

  1. 然后客户端进程首先创建传输控制模块TCB。向服务端发出连接请求报文段,这是首部当中的同步位SYN=1,同时选择一个初始序号seq=x。TCP规定,SYN报文段(即SYN=1的报文段)不能写数据,但要消耗掉一个序号。
    在这里插入图片描述

  2. 这时候客户端就进入了同步已发送的状态。服务端收到连接请求报文段后,如果同意建立连接,则向客户端发送确认,在确认报文段中把SYN位和ACK位置都置为1,确认号为ack+1,同时也为自己选择一个初始序号y。同样的这个报文段也是不能写数据的,但同时要消耗掉一个序号。这时服务端进入了同步收到状态。
    在这里插入图片描述

  3. 客户端收到服务端的确认之后,向服务端给出确认。确认报文段的ACK置1,确认号ack=y+1,而自己的seq=x+1。ACK报文段是可以携带数据的,但如果不携带数据则不消耗序号,在这种情况下,下一个数据报文段的序号仍为seq=x+1

在这里插入图片描述

这时候TCP已经建立了。两端都进行入了已经建立连接的阶段状态

为什么是三次握手呢?

TCP是全双工,并且为了证明双方的收发能力只是一个表面的现象。更深层是为了防止 已失效的连接请求报文段突然又传送到了B 因而产生重复连接或者资源浪费

我们来分析一下:

  1. 首先是正常情况:A发出连接请求,但因连接请求报文丢失而未收到确认。于是A再重传一次连接请求。后来收到了确认,建立了连接。数据传输完毕后,就释放了连接。
    在这里插入图片描述
    A共发送了两次连接报文请求,其中第一个丢失,第二个到达了B,没有已失效的连接请求报文段
    在这里插入图片描述

  2. 接下来是坏的情况:A发出的第一个连接请求报文段并没有丢失,而是在某些网络长时间滞留了,以致于到连接释放以后的某个时间才到达B。本来这是一个早已失效的报文段,但B收到此失效的连接请求报文段后,就误认为是A又发出一次新的连接请求。于是B就向A发出确认报文段,同意报文连接。

在这里插入图片描述
但是由于现在A并没有发出建立连接的请求,因此不会理睬B的确认,也不会向B发送数据。 但B以为新的运输连接已经建立了,并一直等待A发送数据来,B的许多资源就这样白白浪费了!

  1. 又有一种情况是:A接受了这次连接,所以又进行一次不必要的连接。
    在这里插入图片描述

如果缺乏第三次握手,服务器无法知道客户端是否正确接收到了建立连接的ACK确认信号。因此,如果消息在网络中出现滞留,客户端将一直重复发送SYN请求(因为有消息滞留,意味着有客户端没收到响应,认为超时,所以重传了),导致服务器不断建立新的连接。这将增加网络拥塞和延迟,并对整个网络性能产生负面影响。

有同学可能会疑惑,怎么A有时候接受,有时候又拒绝??
这是因为现实的网络是很复杂的,很多情况并不是按照我们所设想或者所规划的进行,任何情况都有可能会发生。

三次握手无懈可击?

并不是无限可击。SYN-Flood攻 击是当前网络上最为常见的DDoS攻击,也是最为经典的拒绝服务攻击。

攻击者首先伪造地址对服务器发起SYN请求,服务器回应(SYN+ACK)包,而真实的IP会认为,我没有发送请求,不作回应。

在这里插入图片描述

服务器没有收到回应,这样的话,服务器不知道(SYN+ACK)是否发送成功,默认情况下会重试5次(tcp_syn_retries)。这样的话,对于服务器的内存,带宽都有很大的消耗。攻击者如果处于公网,可以伪造IP的话,对于服务器就很难根据IP来判断攻击者,给防护带来很大的困难。

那改进成四次握手?

三次握手有的缺陷,就算N次握手,也一样会有相关问题的出现!三次握手是在连接顺利的基础上最大地合理利用网络资源

参考

[1] https://www.cnblogs.com/guoxiaoyu/p/17716038.html
[2] https://blog.csdn.net/u011037593/article/details/115024040

这篇关于图解TCP三次握手|深度解析|为什么是三次的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150106

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St