✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

2024-09-08 14:44

本文主要是介绍✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1️⃣线性回归(linear regression)

f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b

🎈A linear regression model predicting house prices:

在这里插入图片描述

如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^2 feet2时,预测的价格为 220k$。

在这里插入图片描述

🎈Terminology:
线性回归中可能用到的术语及含义
在这里插入图片描述

2️⃣代价函数(cost function)

为了预测出更准确的结果,需要模型更好的拟合程度,对于线性回归模型 f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b,我们需要找到合适的参数 w w w b b b,使得拟合程度最高。

在这里插入图片描述
🎉而如何找到合适的 w w w b b b 呢,这时需要通过代价函数(cost function)来进行衡量。我们希望对于每组数据,模型通过 x ( i ) x^{(i)} x(i) 预测出的 y ^ ( i ) \hat{y}^{(i)} y^(i) 接近真实的 y ( i ) y^{(i)} y(i) ,于是有如下的代价函数:

J = 1 2 m ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) 2 J = \frac{1}{2m}\sum_{i=1}^{m}(\hat{y}^{(i)}-y^{(i)})^2 J=2m1i=1m(y^(i)y(i))2

J ( w , b ) = 1 2 m ∑ i = 1 m ( f w , b ( x ( i ) ) − y ( i ) ) 2 J(w,b)=\frac{1}{2m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})^2 J(w,b)=2m1i=1m(fw,b(x(i))y(i))2

✨现在的目标就变为 minimize w , b J ( w , b ) \underset{w, b}{\text{minimize}}J(w,b) w,bminimizeJ(w,b)


为了简单理解代价函数,让 b = 0 b=0 b=0 简化函数,针对 f ( x ) = w x f(x) = wx f(x)=wx 讨论。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

对所有的 w w w 取值最终可以列出一个代价函数:

在这里插入图片描述
可以看到当 w = 1 w=1 w=1 J ( w ) J(w) J(w) 最小,此时的 w w w 即为我们找到的最合适的参数。


当我们不再忽略 b b b ,来研究两个参数 w w w b b b 影响下的代价函数时,它的函数是一个三维图形,此时 J J J 的最小值在这个3D图形的底部:
在这里插入图片描述

假设我们拿一把小刀🔪去水平地给这样的三维图形砍一刀,去看这个横切面,大概可以得到这样的图形:
在这里插入图片描述

回归函数 f w , b f_{w,b} fw,b 和代价函数中的点的对应关系如下:
在这里插入图片描述

3️⃣梯度下降(gradient descent)

✨​ 用于求代价函数 J ( w , b ) J(w,b) J(w,b) 的最小值的方法, α \alpha α 为学习率(learning rate)。
w = w − α ∂ ∂ w J ( w , b ) w=w-\alpha\frac{\partial}{\partial w} J(w, b) w=wαwJ(w,b)

b = b − α ∂ ∂ b J ( w , b ) b=b-\alpha\frac{\partial}{\partial b} J(w, b) b=bαbJ(w,b)

对于一个三维的代价函数,想象成有个小人站在山上一个点,对于自己的360度的方向,需要选择一个方向迈出一步,确保这一步比其他各个方向下降的都要快,然后到达下一个点后以此类推,最终下降到最低点。
在这里插入图片描述
如果从不同的 ( w , b ) (w,b) (w,b) 作为起点,最后降低到的最低点不同,这些谷底被称为 local mininum(局部极小值)

🎉这个梯度下降的过程就是不断调整 w w w b b b 的过程:

在这里插入图片描述


学习率 α \alpha α
在这里插入图片描述

在这里插入图片描述

这篇关于✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148397

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda