AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

本文主要是介绍AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理

引言

在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

什么是动量?

动量最初是物理学中的一个概念,用于描述物体的运动。动量法在优化算法中引入了一个“动量”项,帮助在优化过程中加速以及平滑更新。动量可以看作是对过去梯度的“回忆”,这种技术使得优化算法能够在一定程度上克服SGD固有的震荡,并在某些方向上加速前进。

动量的基本想法

动量法利用了梯度的历史信息,通常通过对过去几次梯度更新的加权求和,来决定当前参数的更新方向。具体来说,当模型在某一方向上的梯度变化较小,而在另一个方向上的梯度变化较大时,动量法能够加快在有效方向上的更新,从而提高收敛速度。

在动量更新中,我们维护一个动量变量 (v),它根据历史梯度逐步更新。动量变量对当前梯度的影响越来越大,而对较久以前的梯度影响逐渐减小。

指数加权移动平均

动量法的核心在于指数加权移动平均(Exponential Moving Average,EMA)。通过对过去的梯度施加一个衰减因子,EMA 使得新的梯度对更新的影响更大,而较旧的梯度的影响逐渐减小。

公式表示

假设我们在第 (t) 次迭代中计算得到的梯度为 (g_t),动量变量 (v_t) 的更新公式为:
[ v t = β v t − 1 + ( 1 − β ) g t ] [ v_t = \beta v_{t-1} + (1 - \beta) g_t ] [vt=βvt1+(1β)gt]
其中, ( β ) (\beta) (β) 是动量系数,通常设置为接近于1(例如,0.9 或 0.99)。这样,动量变量 ( v t ) (v_t) (vt) 会逐渐地保留历史梯度信息,同时抑制噪声带来的干扰。参数的更新则通过以下公式完成:
[ θ t = θ t − 1 − α v t ] [ \theta_t = \theta_{t-1} - \alpha v_t ] [θt=θt1αvt]

这里, ( α ) (\alpha) (α) 是学习率。

动量在参数更新中的作用

在采用动量法后,参数更新的路径会更加平滑和稳定。具体来说,动量带来的优势主要体现在以下几个方面:

  1. 加速收敛:在深度的损失曲面中,有些方向会出现较大的梯度,而另一些方向的梯度可能会相对较小。动量方法通过对历史梯度的重置,能够在大的梯度方向上加速更新。

  2. 减小震荡:SGD 的震荡通常会导致模型难以在局部最优点附近平稳地收敛。动量法通过平滑的优化路径减少这种震荡,使得更新方向更加稳定。

  3. 逃离局部最优:通过保持较高的动量,有时候模型将能够逃离局部最优点,因为动量会推动参数在一定方向上继续移动。

实际示例

为了更好地理解和运用带动量的随机梯度下降法,我们将展示一个实际示例。假设我们要训练一个简单的线性回归模型,损失函数为均方误差(MSE)。

1. 线性回归模型

模型的预测公式为:
[ y ^ = w x + b ] [ \hat{y} = wx + b ] [y^=wx+b]
其中, ( w ) (w) (w) 是权重, ( b ) (b) (b) 是偏差。损失函数定义为:
[ L ( w , b ) = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 ] [ L(w, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 ] [L(w,b)=n1i=1n(yiy^i)2]

2. 梯度计算

对于每个参数 (w) 和 (b),我们需要计算它们的梯度:
[ ∂ L ∂ w = − 2 n ∑ i = 1 n ( y i − y ^ i ) ⋅ x i ] [ \frac{\partial L}{\partial w} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i) \cdot x_i ] [wL=n2i=1n(yiy^i)xi]
[ ∂ L ∂ b = − 2 n ∑ i = 1 n ( y i − y ^ i ) ] [ \frac{\partial L}{\partial b} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i) ] [bL=n2i=1n(yiy^i)]

3. 动量更新

在训练过程中,我们将使用动量方法更新权重和偏差。以下是代码示例(以 Python 和 NumPy 为例):

import numpy as np# 超参数
alpha = 0.01  # 学习率
beta = 0.9    # 动量系数
num_epochs = 1000  # 训练轮次# 模型参数
w = np.random.randn()  # 权重初始化
b = np.random.randn()  # 偏差初始化# 动量变量初始化
v_w = 0
v_b = 0# 训练数据(示例)
X = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 5, 7, 11])# 训练过程
for epoch in range(num_epochs):# 计算预测值y_pred = w * X + b# 计算损失loss = np.mean((y - y_pred) ** 2)# 计算梯度grad_w = -2 * np.mean((y - y_pred) * X)grad_b = -2 * np.mean(y - y_pred)# 更新动量v_w = beta * v_w + (1 - beta) * grad_wv_b = beta * v_b + (1 - beta) * grad_b# 更新参数w -= alpha * v_wb -= alpha * v_bif epoch % 100 == 0:print(f"Epoch {epoch}, Loss: {loss}, w: {w}, b: {b}")print(f"Final parameters: w: {w}, b: {b}")

4. 结果分析

通过上述代码,我们定义了一个简单的线性回归模型,在训练过程中应用动量法以进行参数更新。需要注意的是,我们在每个轮次中计算损失以及参数,通过调整学习率和动量系数,从而观察到模型如何逐步收敛。

在使用动量法后,我们会发现与普通SGD相比,损失下降得更快,参数更新更加平滑,最终得到的模型效果更好。

总结

动量法是优化算法中一个极其重要的概念,它通过对历史梯度的加权平均来稳定参数更新过程,提高收敛速度。通过引入动量,我们能够在训练过程中减少震荡,快速逃离局部最优,达到更好的收敛效果。

本文对动量法的原理、公式以及实践应用进行了详细的介绍,期望能够为你在深度学习的道路上提供有益的帮助。希望在未来的学习中,大家能够深入掌握动量法及其变种,为构建更为复杂和精确的模型奠定基础。

这篇关于AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148054

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3