LeetCode:3177. 求出最长好子序列 II 哈希表+动态规划实现n*k时间复杂度

本文主要是介绍LeetCode:3177. 求出最长好子序列 II 哈希表+动态规划实现n*k时间复杂度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3177. 求出最长好子序列 II

题目链接

题目描述

给你一个整数数组 nums 和一个非负整数k 。如果一个整数序列 seq 满足在下标范围 [0, seq.length - 2] 中 最多只有 k 个下标i满足 seq[i] != seq[i + 1] ,那么我们称这个整数序列为好序列。请你返回 nums中好子序列的最长长度。

实例1:

输入:nums = [1,2,1,1,3], k = 2
输出:2
解释:最长的好子序列是 [1,2,1,1] 。

实例2:

输入:nums = [1,2,3,4,5,1], k = 0
输出:2
解释:最长好子序列为 [1,1] 。

题目解析

这道题目是求出最长好子序列 I的升级版,对时间复杂度有了更高的要求。我们在上一篇题解中,给出了时间复杂度为 O ( n 2 ∗ k ) O(n^2*k) O(n2k)的解法。这次需要将时间复杂度降低到 O ( n ∗ k ) O(n*k) O(nk)

解题思路

这道题目和求出最长好子序列 I的解法类似,也是使用动态规划。

我们同样定义定义dp[i][j]表示以nums[i]结尾,最多有j个下标i 满足seq[i] != seq[i + 1]的子序列的长度。其中,0<=j<=k。

而在上一篇题解中,我们使用了三重循环,来解决问题。

而这次,我们考虑去掉第三重循环。

			for cur := 0; cur < i; cur++ {if nums[i] == nums[cur] {dp[i][j]=max(dp[i][j],dp[cur][j]+1)}else{if(j-1>=0){dp[i][j]=max(dp[i][j],dp[cur][j-1]+1)}}}

我们看到,循环中只需考虑两种情况

  • 数字i之前有数字和nums[i]相同
  • 数字i之前有数字和nums[i]不同,且j大于0

因此我们使用哈希表lastPos := make(map[int]int) 用于记录和nums[i]相同的数字最后出现的位置。
lastMax := make([]int, k+1) 用于记录不同列的当前最大取值,即dp[cur][j-1]的最大值,其中0 <=cur<i

  • 数字i之前有数字和nums[i]相同,则dp[i][j]=max(dp[i][j],dp[lastPos[nums[i]]][j]+1)
  • 数字i之前有数字和nums[i]不同,且j大于0,则dp[i][j]=max(dp[i][j],lastMax[j-1]+1)

代码实现

Go版本:

func maximumLength(nums []int, k int) int {n := len(nums)dp := make([][]int, n)for i := range dp {dp[i] = make([]int, k+1)}res := 0lastPos := make(map[int]int) // 用于记录每个数字的最后出现位置lastMax := make([]int, k+1)  // 用于记录第 j 列的最大值lastNew := make([]int, k+1)  // 用于临时保存本轮计算中的最大值for i := 0; i < n; i++ {dp[i][0] = 1// 在每次外循环开始时,重置 lastNew 为 lastMax 的当前状态copy(lastNew, lastMax)for j := 0; j <= k && j <= i; j++ {// 如果数字之前出现过,更新 dp[i][j] 的值if pos, found := lastPos[nums[i]]; found {dp[i][j] = max(dp[i][j], dp[pos][j]+1)}// 如果允许更多的 k,考虑使用 lastMax[j-1]if j > 0 {dp[i][j] = max(dp[i][j], lastMax[j-1]+1)}// 更新 lastNew 和最终结果lastNew[j] = max(lastNew[j], dp[i][j])res = max(res, dp[i][j])}// 外循环结束时,将 lastMax 更新为本轮的 lastNewcopy(lastMax, lastNew)// 更新当前数字最后一次出现的位置lastPos[nums[i]] = i}return res
}

C++版本:

class Solution {
public:int maximumLength(vector<int>& nums, int k) {int n=nums.size();vector<vector<int>> dp(n,vector<int>(k+1,0));int res=0;vector<int> lastMax(k+1,0);vector<int> lastTemp(k+1, 0);unordered_map<int,int> lastPos;for(int i=0;i<n;i++){dp[i][0]=1;for(int j=0;j<=k;j++){if(lastPos.count(nums[i])){dp[i][j]=max(dp[i][j],dp[lastPos[nums[i]]][j]+1);}if(j>0){dp[i][j]=max(dp[i][j],lastMax[j-1]+1);}lastTemp[j]=max(lastTemp[j],dp[i][j]);res=max(res,dp[i][j]);}lastPos[nums[i]]=i;lastMax=lastTemp;}return res;}
};

Python版本:

class Solution(object):def maximumLength(self, nums, k):n = len(nums)dp = [[0] * (k + 1) for _ in range(n)]res = 0last_max = [0] * (k + 1)last_temp = [0] * (k + 1)last_pos = {}for i in range(n):dp[i][0] = 1for j in range(k + 1):if nums[i] in last_pos:dp[i][j] = max(dp[i][j], dp[last_pos[nums[i]]][j] + 1)if j > 0:dp[i][j] = max(dp[i][j], last_max[j - 1] + 1)last_temp[j] = max(last_temp[j], dp[i][j])res = max(res, dp[i][j])last_pos[nums[i]] = ilast_max = last_temp[:]return res

这篇关于LeetCode:3177. 求出最长好子序列 II 哈希表+动态规划实现n*k时间复杂度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148042

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S