一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

本文主要是介绍一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.没有分段的情况

原函数为一元二次凹函数(开口向下),如下:

f_0(x)=(ax-b)(d-cx), where\ a>0,b>0,c>0, d>0, and\ \frac{b}{a} < \frac{d}{c}.

因为要使得其存在正解,必须满足\frac{b}{a} < x < \frac{d}{c},那么\frac{b}{a} < \frac{d}{c}

上述函数的最优结果为:x^*=\frac{a d+b c}{2 a c}f(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

对应的mathematica代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
Maximize[{f0[x, a, b, c, d], a > 0 && b > 0 && c > 0 && d > 0}, x]

对应的mathematica结果如下:

2. 两个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(ex-f)

(3)其中分段点为减去部分为零时候的x值(即ex-f=0\Rightarrow x=\frac{f}{e}

\begin{array}{l} F(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_{1}}(x)}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, and\ \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, f1_] := (a*x - b)*((d - c*x) - (e1*x - f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)Fx[x_, a_, b_, c_, d_, e1_, f1_] := Piecewise[{{f0[x, a, b, c, d], x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1)]Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && b/a < (b c + a d)/(2 a c) < d/c]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && b/a < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) < (d + f1)/(c + e1)]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) < f1/e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) )]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && f1/e1 < (b c + a d)/(2 a c) < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) )](*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(\
b c+a d)/(2 a c)>f1/e1&&f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) \
)&&f1[((b c+a d)+(b e1+a f1))/(2 (a c+a e1) ),a,b,c,d,e1,f1]>f0[(b \
c+a d)/(2 a c),a,b,c,d]]*)

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出F(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即F(x)= f_0(x)

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, f1_] := (a*x - b)*((d - c*x) - (e1*x - f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)Fx[x_, a_, b_, c_, d_, e1_, f1_] := Piecewise[{{f0[x, a, b, c, d], x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];(*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)]Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<(b c+a d)/(2 a c)<d/c]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )<(d+f1)/(c+e1)]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(b \
c+a d)/(2 a c)<f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&f1/\
e1<(b c+a d)/(2 a c)<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]*)Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && b/a < d/c && b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) > f1/e1 && f1/e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) && f1[((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ), a, b, c, d, e1, f1] > f0[(b c + a d)/(2 a c), a, b, c, d]]

3. 三个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(e_1x-f_1)

(3)其中第二分段点为减去部分为零时候的x值(即e_1x-f_1=0\Rightarrow x=\frac{f_1}{e_1}

(4)第三分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即e_2x - f_2),即为(d-cx)-(e_2x-f_2)

(5)其中第三分段点为减去部分为零时候的x值(即e_2x-f_2=0\Rightarrow x=\frac{f_2}{e_2}

\begin{array}{l} G(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_1}(x)}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {​{f_2}(x)}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d - cx) - ({e_2}x - {f_2})]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d + {f_2}) - (c + {e_2})x]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}, e_2>0, f_2>0, \frac{b}{a} < \frac{​{d + {f_2}}}{​{c + {e_2}}}, and\ \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{​{f_2}}}{​{​{e_2}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

针对第三分段f_2(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}f_2(x^*)={\frac{​{​{​{(b(c + e_2) - a(d + f_2))}^2}}}{​{4a(c + e_2)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(iii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_2} + af_2} \right)}}{​{2\left( {ac + a{e_2}} \right)}} < \frac{​{d + {f_2}}}{​{c + {e_2}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

(ii)\frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证);

(3)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_2}}}{​{​{e_2}}}

(3.1)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} \le \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{​{f_2}}}{​{​{e_2}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(3.2)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} > \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_2}(\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出G(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即G(x)= f_0(x)

该结论可以扩展到N个分段的情况下,也就是N个分段的函数的最优结果不会优于原函数f_0(x)的最优结果。

这篇关于一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147868

相关文章

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1