YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

本文主要是介绍YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

01:YOLOv8 + DeepSort 车辆跟踪

该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。

02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线

在此基础上增加了用户界面功能,允许用户在视频监控区域内自由绘制进出线。当被跟踪的车辆穿过这些线时,系统会记录事件,例如记录车辆进入或离开某个区域的时间。这对于交通流量管理和安全监控很有帮助。

03:YOLOv8 + DeepSort 车辆跟踪 + 测速

系统增加了测速功能,通过计算车辆在两帧或多帧图像之间的位移来估计其速度。一旦检测到车辆超速,系统将触发报警机制。这项功能对于交通安全监控尤为重要。

04:YOLOv8 + DeepSort 车辆跟踪 + 测速 + 任意绘制进出线

结合了测速和任意绘制进出线的功能,不仅能够跟踪车辆并测量其速度,还能在用户定义的进出线上记录车辆的速度和通行时间。这对于交通管理和执法活动非常有用。

05:YOLOv8 + DeepSort 车辆跟踪 + 禁停区域 + 进出线

增加了禁停区域的检测功能,系统能够识别并标记出不允许停车的区域。当车辆在这些区域内停留时,系统将触发警报。同时,进出线的功能可以帮助监控车辆是否非法进入禁停区。

06:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制禁停区域 + 任意绘制进出线

进一步提升了系统的灵活性,允许用户根据需要自定义禁停区域以及进出线的位置。这种配置可以更好地适应各种应用场景,如临时禁停区域的设置。

07:YOLOv8 + DeepSort 车辆跟踪 + 测速 + 禁停区域 + 进出线

整合了测速、禁停区域和进出线的功能,系统可以在监测车辆速度的同时,防止车辆在不应停车的地方停留,并记录它们的进出情况。这对于交通安全管理非常关键。

08:YOLOv8 + DeepSort 车辆跟踪 + 测速 + 任意绘制禁停区域 + 任意绘制进出线

提供了最大的灵活性,允许用户根据具体的监控需求自由设定禁停区域和进出线的位置。这对于需要高度定制化监控解决方案的应用尤其适用。

09:YOLOv8 + DeepSort 车辆跟踪 + 车道车辆检测

此项目在车辆跟踪的基础上增加了车道检测功能,能够识别道路上的不同车道,并且能够区分各车道上的车辆。这有助于智能交通系统更好地管理交通流量,减少道路拥堵现象。

每个项目都利用了YOLOv8的高效检测能力和DeepSort的跟踪优势,可以根据具体的应用场景和技术要求进行调整和优化。

首先,确保安装了必要的库:

 
1pip install ultralytics  # YOLOv8
2pip install deep_sort_pytorch  # DeepSort

基础代码框架

1. 导入必要的库
 
1import cv2
2from ultralytics import YOLO
3from deep_sort_pytorch.deep_sort import DeepSort
4import numpy as np
2. 初始化YOLOv8模型和DeepSort
1# 加载YOLOv8模型
2model = YOLO('yolov8n.pt')  # 或者使用预训练模型路径
3
4# 初始化DeepSort
5deepsort = DeepSort(
6    'osnet_x0_25',
7    max_dist=0.2,
8    max_iou_distance=0.7,
9    max_age=70,
10    n_init=3,
11    nn_budget=100,
12    use_cuda=True
13)
3. 定义处理每一帧的方法
1def process_frame(frame, model, deepsort):
2    # 使用YOLOv8进行目标检测
3    results = model(frame)
4
5    # 获取检测结果
6    boxes = results[0].boxes.cpu().numpy()
7    scores = results[0].scores.cpu().numpy()
8    classes = results[0].names
9
10    # 只保留车辆类别的检测结果
11    vehicle_boxes = []
12    for box, score, class_name in zip(boxes, scores, classes):
13        if class_name in ['car', 'truck', 'bus']:  # 根据YOLOv8的类别名称选择
14            vehicle_boxes.append([*box[:4], score])
15
16    # 将检测结果传递给DeepSort进行跟踪
17    outputs = deepsort.update(np.array(vehicle_boxes), frame)
18
19    # 绘制跟踪框
20    for output in outputs:
21        x1, y1, x2, y2, track_id = output
22        cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
23        cv2.putText(frame, f"ID: {int(track_id)}", (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
24
25    return frame
4. 处理视频流
1# 打开视频文件
2video_path = 'path_to_your_video.mp4'
3cap = cv2.VideoCapture(video_path)
4
5while cap.isOpened():
6    ret, frame = cap.read()
7    if not ret:
8        break
9
10    # 处理每一帧
11    processed_frame = process_frame(frame, model, deepsort)
12
13    # 显示结果
14    cv2.imshow('Vehicle Tracking', processed_frame)
15
16    # 按Q键退出
17    if cv2.waitKey(1) & 0xFF == ord('q'):
18        break
19
20# 清理
21cap.release()
22cv2.destroyAllWindows()

扩展功能

对于扩展功能,如测速、绘制进出线、禁停区域等功能,需要在process_frame函数中加入额外的逻辑。例如,为了实现测速功能,你可以根据车辆在不同帧中的位置变化来计算速度;为了绘制进出线,可以在processed_frame上使用cv2.line()函数添加线条,并检查车辆是否跨越了这些线。

这篇关于YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147750

相关文章

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

QT6中绘制UI的两种方法详解与示例代码

《QT6中绘制UI的两种方法详解与示例代码》Qt6提供了两种主要的UI绘制技术:​​QML(QtMeta-ObjectLanguage)​​和​​C++Widgets​​,这两种技术各有优势,适用于不... 目录一、QML 技术详解1.1 QML 简介1.2 QML 的核心概念1.3 QML 示例:简单按钮

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新