java-redis-雪崩

2024-09-08 09:20
文章标签 java redis 雪崩

本文主要是介绍java-redis-雪崩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis 雪崩问题

Redis雪崩 是指在 Redis 缓存系统中,当大量缓存同时失效时,所有请求直接打到数据库,导致数据库瞬间压力激增,甚至崩溃的现象。雪崩问题通常出现在高并发的系统中,因为缓存的失效导致后端数据库承受不了巨大的请求量。

具体表现:
  • 大量缓存同时失效后,所有流量直接访问数据库。
  • 数据库承载过大的并发量,导致性能急剧下降,甚至崩溃。
  • 之后,当 Redis 缓存恢复正常时,由于数据库崩溃或者性能下降,依然无法正常服务。

一、Redis 雪崩的原因

  1. 大批量缓存同时失效:当 Redis 中的大批量缓存设置了相同的过期时间,并且过期后没有及时重新生成,所有原本应从缓存中获取的数据都会直接从数据库中请求,导致数据库压力瞬间增加。

  2. 缓存服务器宕机:如果 Redis 缓存服务器因为某种原因宕机,所有请求将直接访问数据库,这可能会导致数据库无法承受高并发的请求,进而崩溃。

  3. 网络问题:Redis 服务在某些时段因为网络原因无法连接,导致缓存服务不可用,所有请求也直接打到数据库上,可能引发类似雪崩的情况。

二、Redis 雪崩的解决方案

  1. 缓存预热:在系统上线之前,可以提前将一些常用数据缓存到 Redis 中,避免上线后大量请求直接打到数据库。这可以通过后台线程预先加载一些热门数据,也可以手动设置缓存。

  2. 设置不同的缓存过期时间:如果所有的缓存数据设置相同的过期时间,当缓存到期后,可能会出现大量缓存同时失效的情况。为了避免这种情况,可以为不同的缓存设置不同的过期时间,或者在设置缓存时加上一个随机的时间差。

  3. 缓存永不过期:对于一些热点数据,特别是经常被访问但又很少变化的数据,可以设置缓存永不过期,同时在后台更新缓存。

  4. 缓存降级:当 Redis 宕机或者出现异常时,可以使用缓存降级策略,允许某些非核心数据的读取失败。也可以通过服务降级手段,限制对数据库的访问,从而保护数据库。

  5. 互斥锁(防止击穿):当大量缓存同时失效时,如果多个线程同时请求数据库并写入缓存,可能会导致数据库压力剧增。可以使用互斥锁的方式,确保只有一个线程能够更新缓存,其他线程等待缓存更新完成后再读取缓存。

  6. 数据持久化与集群:使用 Redis 的持久化机制(如 RDB、AOF)或搭建 Redis 集群来保证缓存的高可用性。当某个节点失效时,可以自动切换到其他节点,避免缓存服务器宕机导致雪崩。

  7. 请求限流和熔断:对系统进行限流和熔断保护,当缓存失效时,限制对数据库的请求数量,防止数据库过载。

三、解决方案的具体实现

1. 缓存预热

通过提前加载一些常用的缓存数据,避免在系统刚启动时,所有请求直接打到数据库。这可以通过手动加载或者后台任务实现。

@Service
public class CachePrewarmService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public void preloadCache() {// 假设我们要预热一些数据String key = "hot_data_key";Object data = loadDataFromDB();  // 从数据库加载数据redisTemplate.opsForValue().set(key, data, 1, TimeUnit.HOURS); // 设置缓存,并设定1小时过期}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
2. 随机过期时间(解决大规模缓存同时失效)

我们可以通过在设置缓存过期时间时,给每个缓存增加一个随机值,避免同时过期导致雪崩。

@Service
public class CacheService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public void setCacheWithRandomTTL(String key, Object value) {// 设置基础的缓存时间,比如1小时long baseTime = 60 * 60;// 添加一个随机的过期时间,避免同一时间大量缓存同时失效long randomTime = new Random().nextInt(300);  // 随机增加0~300秒redisTemplate.opsForValue().set(key, value, baseTime + randomTime, TimeUnit.SECONDS);}
}
3. 使用互斥锁防止缓存击穿

缓存击穿是指某个热点数据的缓存失效后,瞬间大量请求直接打到数据库,导致数据库压力骤增。可以使用分布式锁,确保在缓存失效时,只有一个线程能请求数据库,其他线程等待缓存重新生成。

@Service
public class CacheWithLockService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;// 获取数据时,使用分布式锁public Object getCacheWithLock(String key) {Object value = redisTemplate.opsForValue().get(key);if (value == null) {// 使用 Redis 的 setIfAbsent (NX) 命令实现分布式锁String lockKey = key + "_lock";Boolean lockAcquired = redisTemplate.opsForValue().setIfAbsent(lockKey, "LOCK", 5, TimeUnit.SECONDS);if (lockAcquired != null && lockAcquired) {try {// 缓存失效且获得锁,查询数据库并更新缓存value = loadDataFromDB();redisTemplate.opsForValue().set(key, value, 60, TimeUnit.SECONDS);} finally {// 释放锁redisTemplate.delete(lockKey);}} else {// 未获得锁,等待缓存更新try {Thread.sleep(100);} catch (InterruptedException e) {e.printStackTrace();}return redisTemplate.opsForValue().get(key);  // 再次尝试获取缓存}}return value;}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
4. 缓存降级

当 Redis 不可用时,系统可以通过降级策略,直接访问数据库或者返回一些默认值。我们可以通过 try-catch 捕获 Redis 异常,来实现降级逻辑。

@Service
public class CacheDegradeService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public Object getData(String key) {try {Object value = redisTemplate.opsForValue().get(key);if (value != null) {return value;}} catch (Exception e) {// Redis 发生异常时,执行降级逻辑System.out.println("Redis不可用,执行降级策略");}// Redis不可用或者缓存失效,直接从数据库获取数据return loadDataFromDB();}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
5. 数据持久化与集群

Redis 提供了 RDB 和 AOF 的持久化机制来保证数据不会因为 Redis 崩溃而丢失。同时,通过 Redis 的集群模式,我们可以将数据分布在多个节点上,提升系统的可靠性和可用性。

# 开启 AOF 持久化
appendonly yes
# 每秒同步一次 AOF 文件
appendfsync everysec# Redis Cluster 配置,启动多个节点,配置集群
cluster-enabled yes
cluster-config-file nodes-6379.conf
cluster-node-timeout 5000

四、总结

  1. Redis 雪崩 是在缓存失效后,大量请求直接打到数据库,导致数据库压力骤增甚至崩溃的问题。在高并发场景下,Redis 雪崩可能会带来严重后果。

  2. 为了避免 Redis 雪崩,可以采取多种措施,如 缓存预热设置不同过期时间使用互斥锁防止缓存击穿缓存降级限流与熔断机制 等。

  3. 持久化与集群 是提升 Redis 可用性的关键,确保即便在单个节点失效的情况下,服务依然能够正常工作。

通过合理的策略和设计,开发者可以大大降低 Redis 雪崩的风险,保障系统的高可用性和稳定性。

这篇关于java-redis-雪崩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1147717

相关文章

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte