java-redis-雪崩

2024-09-08 09:20
文章标签 java redis 雪崩

本文主要是介绍java-redis-雪崩,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Redis 雪崩问题

Redis雪崩 是指在 Redis 缓存系统中,当大量缓存同时失效时,所有请求直接打到数据库,导致数据库瞬间压力激增,甚至崩溃的现象。雪崩问题通常出现在高并发的系统中,因为缓存的失效导致后端数据库承受不了巨大的请求量。

具体表现:
  • 大量缓存同时失效后,所有流量直接访问数据库。
  • 数据库承载过大的并发量,导致性能急剧下降,甚至崩溃。
  • 之后,当 Redis 缓存恢复正常时,由于数据库崩溃或者性能下降,依然无法正常服务。

一、Redis 雪崩的原因

  1. 大批量缓存同时失效:当 Redis 中的大批量缓存设置了相同的过期时间,并且过期后没有及时重新生成,所有原本应从缓存中获取的数据都会直接从数据库中请求,导致数据库压力瞬间增加。

  2. 缓存服务器宕机:如果 Redis 缓存服务器因为某种原因宕机,所有请求将直接访问数据库,这可能会导致数据库无法承受高并发的请求,进而崩溃。

  3. 网络问题:Redis 服务在某些时段因为网络原因无法连接,导致缓存服务不可用,所有请求也直接打到数据库上,可能引发类似雪崩的情况。

二、Redis 雪崩的解决方案

  1. 缓存预热:在系统上线之前,可以提前将一些常用数据缓存到 Redis 中,避免上线后大量请求直接打到数据库。这可以通过后台线程预先加载一些热门数据,也可以手动设置缓存。

  2. 设置不同的缓存过期时间:如果所有的缓存数据设置相同的过期时间,当缓存到期后,可能会出现大量缓存同时失效的情况。为了避免这种情况,可以为不同的缓存设置不同的过期时间,或者在设置缓存时加上一个随机的时间差。

  3. 缓存永不过期:对于一些热点数据,特别是经常被访问但又很少变化的数据,可以设置缓存永不过期,同时在后台更新缓存。

  4. 缓存降级:当 Redis 宕机或者出现异常时,可以使用缓存降级策略,允许某些非核心数据的读取失败。也可以通过服务降级手段,限制对数据库的访问,从而保护数据库。

  5. 互斥锁(防止击穿):当大量缓存同时失效时,如果多个线程同时请求数据库并写入缓存,可能会导致数据库压力剧增。可以使用互斥锁的方式,确保只有一个线程能够更新缓存,其他线程等待缓存更新完成后再读取缓存。

  6. 数据持久化与集群:使用 Redis 的持久化机制(如 RDB、AOF)或搭建 Redis 集群来保证缓存的高可用性。当某个节点失效时,可以自动切换到其他节点,避免缓存服务器宕机导致雪崩。

  7. 请求限流和熔断:对系统进行限流和熔断保护,当缓存失效时,限制对数据库的请求数量,防止数据库过载。

三、解决方案的具体实现

1. 缓存预热

通过提前加载一些常用的缓存数据,避免在系统刚启动时,所有请求直接打到数据库。这可以通过手动加载或者后台任务实现。

@Service
public class CachePrewarmService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public void preloadCache() {// 假设我们要预热一些数据String key = "hot_data_key";Object data = loadDataFromDB();  // 从数据库加载数据redisTemplate.opsForValue().set(key, data, 1, TimeUnit.HOURS); // 设置缓存,并设定1小时过期}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
2. 随机过期时间(解决大规模缓存同时失效)

我们可以通过在设置缓存过期时间时,给每个缓存增加一个随机值,避免同时过期导致雪崩。

@Service
public class CacheService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public void setCacheWithRandomTTL(String key, Object value) {// 设置基础的缓存时间,比如1小时long baseTime = 60 * 60;// 添加一个随机的过期时间,避免同一时间大量缓存同时失效long randomTime = new Random().nextInt(300);  // 随机增加0~300秒redisTemplate.opsForValue().set(key, value, baseTime + randomTime, TimeUnit.SECONDS);}
}
3. 使用互斥锁防止缓存击穿

缓存击穿是指某个热点数据的缓存失效后,瞬间大量请求直接打到数据库,导致数据库压力骤增。可以使用分布式锁,确保在缓存失效时,只有一个线程能请求数据库,其他线程等待缓存重新生成。

@Service
public class CacheWithLockService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;// 获取数据时,使用分布式锁public Object getCacheWithLock(String key) {Object value = redisTemplate.opsForValue().get(key);if (value == null) {// 使用 Redis 的 setIfAbsent (NX) 命令实现分布式锁String lockKey = key + "_lock";Boolean lockAcquired = redisTemplate.opsForValue().setIfAbsent(lockKey, "LOCK", 5, TimeUnit.SECONDS);if (lockAcquired != null && lockAcquired) {try {// 缓存失效且获得锁,查询数据库并更新缓存value = loadDataFromDB();redisTemplate.opsForValue().set(key, value, 60, TimeUnit.SECONDS);} finally {// 释放锁redisTemplate.delete(lockKey);}} else {// 未获得锁,等待缓存更新try {Thread.sleep(100);} catch (InterruptedException e) {e.printStackTrace();}return redisTemplate.opsForValue().get(key);  // 再次尝试获取缓存}}return value;}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
4. 缓存降级

当 Redis 不可用时,系统可以通过降级策略,直接访问数据库或者返回一些默认值。我们可以通过 try-catch 捕获 Redis 异常,来实现降级逻辑。

@Service
public class CacheDegradeService {@Autowiredprivate RedisTemplate<String, Object> redisTemplate;public Object getData(String key) {try {Object value = redisTemplate.opsForValue().get(key);if (value != null) {return value;}} catch (Exception e) {// Redis 发生异常时,执行降级逻辑System.out.println("Redis不可用,执行降级策略");}// Redis不可用或者缓存失效,直接从数据库获取数据return loadDataFromDB();}private Object loadDataFromDB() {// 模拟从数据库加载数据return new Object();  // 返回数据库中的数据}
}
5. 数据持久化与集群

Redis 提供了 RDB 和 AOF 的持久化机制来保证数据不会因为 Redis 崩溃而丢失。同时,通过 Redis 的集群模式,我们可以将数据分布在多个节点上,提升系统的可靠性和可用性。

# 开启 AOF 持久化
appendonly yes
# 每秒同步一次 AOF 文件
appendfsync everysec# Redis Cluster 配置,启动多个节点,配置集群
cluster-enabled yes
cluster-config-file nodes-6379.conf
cluster-node-timeout 5000

四、总结

  1. Redis 雪崩 是在缓存失效后,大量请求直接打到数据库,导致数据库压力骤增甚至崩溃的问题。在高并发场景下,Redis 雪崩可能会带来严重后果。

  2. 为了避免 Redis 雪崩,可以采取多种措施,如 缓存预热设置不同过期时间使用互斥锁防止缓存击穿缓存降级限流与熔断机制 等。

  3. 持久化与集群 是提升 Redis 可用性的关键,确保即便在单个节点失效的情况下,服务依然能够正常工作。

通过合理的策略和设计,开发者可以大大降低 Redis 雪崩的风险,保障系统的高可用性和稳定性。

这篇关于java-redis-雪崩的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147717

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input