图神经网络框架DGL实现Graph Attention Network (GAT)笔记

2024-09-08 09:18

本文主要是介绍图神经网络框架DGL实现Graph Attention Network (GAT)笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考列表:

[1]深入理解图注意力机制
[2]DGL官方学习教程一 ——基础操作&消息传递
[3]Cora数据集介绍+python读取

一、DGL实现GAT分类机器学习论文

程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3])
在这里插入图片描述

1. 程序

Ubuntu:18.04
cuda:11.1
cudnn:8.0.4.30
pytorch:1.7.0
networkx:2.5

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as npclass GATLayer(nn.Module):def __init__(self, g, in_dim, out_dim):super(GATLayer, self).__init__()self.g = gself.fc = nn.Linear(in_dim, out_dim, bias=False)self.attn_fc = nn.Linear(2 * out_dim, 1, bias=False)def edge_attention(self, edges):z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)a = self.attn_fc(z2)return {'e' : F.leaky_relu(a)}def message_func(self, edges):return {'z' : edges.src['z'], 'e' : edges.data['e']}def reduce_func(self, nodes):alpha = F.softmax(nodes.mailbox['e'], dim=1)h = torch.sum(alpha * nodes.mailbox['z'], dim=1)return {'h' : h}def forward(self, h):z = self.fc(h) # eq. 1self.g.ndata['z'] = z self.g.apply_edges(self.edge_attention) # eq. 2self.g.update_all(self.message_func, self.reduce_func) # eq. 3 and 4return self.g.ndata.pop('h')class MultiHeadGATLayer(nn.Module):def __init__(self, g, in_dim, out_dim, num_heads, merge='cat'):super(MultiHeadGATLayer, self).__init__()self.heads = nn.ModuleList()for i in range(num_heads):self.heads.append(GATLayer(g, in_dim, out_dim))self.merge = mergedef forward(self, h):head_outs = [attn_head(h) for attn_head in self.heads]if self.merge == 'cat':return torch.cat(head_outs, dim=1)else:return torch.mean(torch.stack(head_outs))class GAT(nn.Module):def __init__(self, g, in_dim, hidden_dim, out_dim, num_heads):super(GAT, self).__init__()self.layer1 = MultiHeadGATLayer(g, in_dim, hidden_dim, num_heads)self.layer2 = MultiHeadGATLayer(g, hidden_dim * num_heads, out_dim, 1)def forward(self, h):h = self.layer1(h)h = F.elu(h)h = self.layer2(h)return hfrom dgl import DGLGraph
from dgl.data import citation_graph as citegrhdef load_core_data():data = citegrh.load_cora()features = torch.FloatTensor(data.features)labels = torch.LongTensor(data.labels)mask = torch.ByteTensor(data.train_mask)g = DGLGraph(data.graph)return g, features, labels, maskimport time 
import numpy as np
g, features, labels, mask = load_core_data()net = GAT(g, in_dim = features.size()[1], hidden_dim=8, out_dim=7, num_heads=8)optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
dur = []
for epoch in range(300):if epoch >= 3:t0 = time.time()logits = net(features)logp = F.log_softmax(logits, 1)loss = F.nll_loss(logp[mask], labels[mask])optimizer.zero_grad()loss.backward()optimizer.step()if epoch >= 3:dur.append(time.time() - t0)print("Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f}".format(epoch, loss.item(), np.mean(dur)))
2.笔记
2.1 初始化一个graph的两种方式

对于如下图数据结构:
0->1
1->2
3->1

多称之为小括号方式

import networkx as nx
import matplotlib.pyplot as plt
import dgl
import torch
%matplotlib inline
g = dgl.graph((torch.tensor([0, 1, 3]), torch.tensor([1, 2, 1]))) # 小括号
nx.draw(g.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]])  #使用nx绘制,设置节点大小及灰度值
plt.show()

在这里插入图片描述
或中括号方式:

import networkx as nx
import matplotlib.pyplot as plt
import dgl
import torch
%matplotlib inline
g = dgl.graph([torch.tensor([0, 1]), torch.tensor([1, 2]), torch.tensor([3, 1])]) # 中括号
nx.draw(g.to_networkx(), node_size=50, node_color=[[.5, .5, .5,]])  #使用nx绘制,设置节点大小及灰度值
plt.show()

在这里插入图片描述
note: 同一个graph,每次打印出来的各节点的位置是随机的。

2.2 DGL的update_all函数实际工作过程

利用如下例程说明:

import networkx as nx
import matplotlib.pyplot as plt
import torch
import dglN = 100  # number of nodes
DAMP = 0.85  # damping factor阻尼因子
K = 10  # number of iterations
g = nx.nx.erdos_renyi_graph(N, 0.1) #图随机生成器,生成nx图
g = dgl.DGLGraph(g)                 #转换成DGL图
g.ndata['pv'] = torch.ones(N) / N  #初始化PageRank值
g.ndata['deg'] = g.in_degrees(g.nodes()).float()  #初始化节点特征
print(g.ndata['deg'])
#定义message函数,它将每个节点的PageRank值除以其out-degree,并将结果作为消息传递给它的邻居:
def pagerank_message_func(edges):return {'pv' : edges.src['pv'] / edges.src['deg']}
#定义reduce函数,它从mailbox中删除并聚合message,并计算其新的PageRank值:
def pagerank_reduce_func(nodes):print("-batch size--pv size-------------")print(nodes.batch_size(), nodes.mailbox['pv'].size())msgs = torch.sum(nodes.mailbox['pv'], dim=1)pv = (1 - DAMP) / N + DAMP * msgsreturn {'pv' : pv}
g.update_all(pagerank_message_func, pagerank_reduce_func)

打印g.ndata[‘deg’]信息(也即每个节点的入度信息)如下:

tensor([ 9., 7., 17., 10., 12., 13., 13., 9., 5., 14., 7., 12., 15., 6.,
15., 7., 13., 7., 11., 9., 9., 15., 9., 12., 10., 8., 10., 9.,
15., 7., 8., 10., 10., 8., 11., 13., 6., 10., 10., 11., 5., 13.,
6., 12., 12., 8., 6., 11., 9., 10., 12., 8., 11., 5., 7., 12.,
4., 7., 8., 13., 11., 14., 9., 10., 12., 10., 10., 9., 10., 13.,
7., 15., 15., 10., 6., 11., 4., 6., 5., 10., 9., 11., 19., 9.,
12., 13., 15., 12., 12., 11., 10., 8., 11., 9., 7., 7., 11., 3.,
10., 5.])

pagerank_reduce_func函数内的打印信息如下:

-batch size–pv size-------------
1 torch.Size([1, 3])
-batch size–pv size-------------
2 torch.Size([2, 4])
-batch size–pv size-------------
5 torch.Size([5, 5])
-batch size–pv size-------------
6 torch.Size([6, 6])
-batch size–pv size-------------
10 torch.Size([10, 7])
-batch size–pv size-------------
7 torch.Size([7, 8])
-batch size–pv size-------------
12 torch.Size([12, 9])
-batch size–pv size-------------
16 torch.Size([16, 10])
-batch size–pv size-------------
11 torch.Size([11, 11])
-batch size–pv size-------------
11 torch.Size([11, 12])
-batch size–pv size-------------
8 torch.Size([8, 13])
-batch size–pv size-------------
2 torch.Size([2, 14])
-batch size–pv size-------------
7 torch.Size([7, 15])
-batch size–pv size-------------
1 torch.Size([1, 17])
-batch size–pv size-------------
1 torch.Size([1, 19])

入度为3的节点只有一个,入度为4的节点有两个,入度为5的节点五个,…

对比图的入度信息与pagerank_reduce_func函数内的打印信息,我们发现:入度为3的节点只有一个,入度为4的节点有两个,入度为5的节点五个,…因此,得出:
1)函数update_all并不是将所有节点一起更新;
2)函数update_all将具有同等个数目标节点的节点放在一起更新,形成一个batch,这也是为什么reduce_func(nodes)中的入参中的入参type为dgl.udf.NodeBatch的原因。reduce_func(nodes)中的入参nodes的不同行代表与不同节点相关的数据。

这篇关于图神经网络框架DGL实现Graph Attention Network (GAT)笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147712

相关文章

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩