【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节

本文主要是介绍【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节

    • 1. 特征提取实现过程总结
      • 1.0 特征提取过程小结
      • 1.1 类 `FeatureExtraction` 的整体结构与作用
      • 1.2 详细特征提取的过程
        • 1. 平滑度计算(`calculateSmoothness()`)
        • 2. 标记遮挡点(`markOccludedPoints()`)
        • 3. 特征提取(`extractFeatures()`)
        • 4. 发布特征点云(`publishFeatureCloud()`)
    • 2.0 特征提取数学推倒过程
    • 3.0 FeatureExtraction Code

1. 特征提取实现过程总结

这段代码实现了基于LiDAR(激光雷达)点云数据的特征提取,用于SLAM(Simultaneous Localization and Mapping)系统中的前端处理。特征提取的目的是从点云中识别出角点和平面点(面点),为后续的位姿估计和地图构建提供关键特征点。
在这里插入图片描述

1.0 特征提取过程小结

这段代码的主要目的是从LiDAR点云中提取出角点(边缘)和面点(平面),以便用于SLAM系统中。整个流程涉及:

  1. 平滑度计算:通过计算每个点的平滑度来区分平滑点和突变点。
  2. 遮挡点标记:通过深度差和像素间距来标记被遮挡的点和平行光束点。
  3. 特征提取:根据曲率值提取角点和面点,分别用于位姿估计和地图构建。
  4. 降采样和发布:通过降采样减少数据冗余,最终发布处理后的特征点云。

1.1 类 FeatureExtraction 的整体结构与作用

  • 类成员:

    • 该类通过 ROS 订阅与发布机制接收来自雷达的点云信息,并在处理后发布提取的特征。
    • 重要的类成员包括:
      • 订阅器 subLaserCloudInfo,用于接收点云数据。
      • 发布器 pubLaserCloudInfopubCornerPointspubSurfacePoints,分别用于发布处理后的点云信息、角点特征和面点特征。
      • 点云指针 extractedCloudcornerCloudsurfaceCloud,用于保存原始提取点云和特征点云。
      • cloudCurvaturecloudNeighborPickedcloudLabel,这些数组用于存储每个点的曲率、是否被选中、点的分类标签。
  • 构造函数 FeatureExtraction

    • 初始化了订阅与发布机制。
    • 调用了 initializationValue() 函数来初始化一些数据结构和参数。
  • 回调函数 laserCloudInfoHandler

    • 处理订阅到的点云信息,调用以下核心功能:calculateSmoothness()(计算每个点的平滑度)、markOccludedPoints()(标记被遮挡的点)和 extractFeatures()(特征提取),最后发布特征点云。

1.2 详细特征提取的过程

   void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr& msgIn){cloudInfo = *msgIn; // new cloud infocloudHeader = msgIn->header; // new cloud headerpcl::fromROSMsg(msgIn->cloud_deskewed, *extractedCloud); // new cloud for extractioncalculateSmoothness();markOccludedPoints();extractFeatures();publishFeatureCloud();}
1. 平滑度计算(calculateSmoothness()

这个函数计算每个点的平滑度,平滑度的定义是基于该点与其前后(5点)若干点之间的距离变化。具体步骤为:

  • for 循环:
    • 遍历从第5个点到倒数第5个点,以避免处理边界的点。
    • 计算该点前后5个点的距离差的平方和,并将该结果作为该点的曲率(即平滑度值 cloudCurvature[i])。
    • 初始化该点的 cloudNeighborPicked 为 0(表示该点还没有被处理过)和 cloudLabel 为 0(标签,初始为未分类)。
    • 将平滑度值和点的索引存储到 cloudSmoothness 中,以便后续进行排序。
2. 标记遮挡点(markOccludedPoints()

该函数标记被遮挡的点以及光束平行的点,以避免它们影响特征提取。主要逻辑如下:

  • 遮挡点:

    • 遍历每个点,比较该点与相邻点的深度差(即距离差)。
    • 如果相邻两个点的列索引差小于 10(表示在深度图像中的像素间距较小),且深度差大于 0.3,则认为是遮挡点并标记为已处理(cloudNeighborPicked[i] = 1),即这些点将不会被选为特征点。
  • 平行光束:

    • 如果前后点与当前点的距离差大于一定比例(0.02 * cloudInfo.pointRange[i]),则认为它们是平行光束,这种情况下这些点也会被标记为已处理。
3. 特征提取(extractFeatures()

这个函数的主要任务是提取角点和面点,并根据曲率值将点云进行分类。主要逻辑如下:

  • for 循环1-2:遍历激光雷达的扫描线 N_SCAN(通常是垂直方向上的扫描线数量),每条扫描线都被分为6个区域,逐个区域进行处理。
    • for 循环3-4:处理每个区域的点,将该区域按平滑度(即曲率)从大到小排序,然后分成两个部分进行处理:

      • 角点提取:
        • 从平滑度最高的点开始,如果该点没有被遮挡且曲率值大于阈值 edgeThreshold,则将其标记为角点,并加入角点点云(cornerCloud)。
        • 为了避免噪声点的影响,最多提取20个角点,并标记相邻的点为已处理,防止相邻的点被重复选取。
      • 面点提取:
        • 对于平滑度较低的点,如果曲率小于阈值 surfThreshold,则将其标记为面点,加入面点点云(surfaceCloud)。
        • 同样,通过标记相邻点来避免重复选择。
    • for 循环5:对于那些没有被标记为角点且曲率较小的点,将它们视为面点。

  • 降采样:通过 pcl::VoxelGrid 对面点进行降采样,减少点云的冗余数据,提升后续处理效率。
  # LOAM feature thresholdedgeThreshold: 1.0surfThreshold: 0.1edgeFeatureMinValidNum: 10surfFeatureMinValidNum: 100
4. 发布特征点云(publishFeatureCloud()

在提取完角点和面点之后,该函数将处理后的点云数据发布出去,用于后续的地图优化和位姿估计。

2.0 特征提取数学推倒过程

数学推倒

3.0 FeatureExtraction Code

#include "utility.h"
#include "lio_sam/cloud_info.h"struct smoothness_t{ float value;size_t ind;
};struct by_value{ bool operator()(smoothness_t const &left, smoothness_t const &right) { return left.value < right.value;}
};class FeatureExtraction : public ParamServer
{public:ros::Subscriber subLaserCloudInfo;ros::Publisher pubLaserCloudInfo;ros::Publisher pubCornerPoints;ros::Publisher pubSurfacePoints;pcl::PointCloud<PointType>::Ptr extractedCloud;pcl::PointCloud<PointType>::Ptr cornerCloud;pcl::PointCloud<PointType>::Ptr surfaceCloud;pcl::VoxelGrid<PointType> downSizeFilter;lio_sam::cloud_info cloudInfo;std_msgs::Header cloudHeader;std::vector<smoothness_t> cloudSmoothness;float *cloudCurvature;int *cloudNeighborPicked;int *cloudLabel;FeatureExtraction(){subLaserCloudInfo = nh.subscribe<lio_sam::cloud_info>("lio_sam/deskew/cloud_info", 1, &FeatureExtraction::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());pubLaserCloudInfo = nh.advertise<lio_sam::cloud_info> ("lio_sam/feature/cloud_info", 1);pubCornerPoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_corner", 1);pubSurfacePoints = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/feature/cloud_surface", 1);initializationValue();}void initializationValue(){cloudSmoothness.resize(N_SCAN*Horizon_SCAN);downSizeFilter.setLeafSize(odometrySurfLeafSize, odometrySurfLeafSize, odometrySurfLeafSize);extractedCloud.reset(new pcl::PointCloud<PointType>());cornerCloud.reset(new pcl::PointCloud<PointType>());surfaceCloud.reset(new pcl::PointCloud<PointType>());cloudCurvature = new float[N_SCAN*Horizon_SCAN];cloudNeighborPicked = new int[N_SCAN*Horizon_SCAN];cloudLabel = new int[N_SCAN*Horizon_SCAN];}/*** @brief 计算平滑度** 遍历提取的点云数据,计算每个点的平滑度,并保存到对应数组中。** @note 对于点云中的每个点,计算其与前五个和后五个点的距离差的平方和作为平滑度。*       同时初始化相邻点被选中的状态为0,以及点的标签为0。*       将平滑度值以及对应的索引保存到cloudSmoothness数组中,以便后续排序。*/void calculateSmoothness(){int cloudSize = extractedCloud->points.size();for (int i = 5; i < cloudSize - 5; i++){float diffRange = cloudInfo.pointRange[i-5] + cloudInfo.pointRange[i-4]+ cloudInfo.pointRange[i-3] + cloudInfo.pointRange[i-2]+ cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i] * 10+ cloudInfo.pointRange[i+1] + cloudInfo.pointRange[i+2]+ cloudInfo.pointRange[i+3] + cloudInfo.pointRange[i+4]+ cloudInfo.pointRange[i+5];            cloudCurvature[i] = diffRange*diffRange;//diffX * diffX + diffY * diffY + diffZ * diffZ;cloudNeighborPicked[i] = 0;cloudLabel[i] = 0;// cloudSmoothness for sortingcloudSmoothness[i].value = cloudCurvature[i];cloudSmoothness[i].ind = i;}}/*** @brief 标记被遮挡的点** 根据给定的点云信息,标记被遮挡的点和平行光束点。*/void markOccludedPoints(){int cloudSize = extractedCloud->points.size();// mark occluded points and parallel beam pointsfor (int i = 5; i < cloudSize - 6; ++i){// occluded pointsfloat depth1 = cloudInfo.pointRange[i];float depth2 = cloudInfo.pointRange[i+1];int columnDiff = std::abs(int(cloudInfo.pointColInd[i+1] - cloudInfo.pointColInd[i]));if (columnDiff < 10){// 10 pixel diff in range imageif (depth1 - depth2 > 0.3){cloudNeighborPicked[i - 5] = 1;cloudNeighborPicked[i - 4] = 1;cloudNeighborPicked[i - 3] = 1;cloudNeighborPicked[i - 2] = 1;cloudNeighborPicked[i - 1] = 1;cloudNeighborPicked[i] = 1;}else if (depth2 - depth1 > 0.3){cloudNeighborPicked[i + 1] = 1;cloudNeighborPicked[i + 2] = 1;cloudNeighborPicked[i + 3] = 1;cloudNeighborPicked[i + 4] = 1;cloudNeighborPicked[i + 5] = 1;cloudNeighborPicked[i + 6] = 1;}}// parallel beamfloat diff1 = std::abs(float(cloudInfo.pointRange[i-1] - cloudInfo.pointRange[i]));float diff2 = std::abs(float(cloudInfo.pointRange[i+1] - cloudInfo.pointRange[i]));if (diff1 > 0.02 * cloudInfo.pointRange[i] && diff2 > 0.02 * cloudInfo.pointRange[i])cloudNeighborPicked[i] = 1;}}void extractFeatures(){cornerCloud->clear();surfaceCloud->clear();pcl::PointCloud<PointType>::Ptr surfaceCloudScan(new pcl::PointCloud<PointType>());pcl::PointCloud<PointType>::Ptr surfaceCloudScanDS(new pcl::PointCloud<PointType>());for (int i = 0; i < N_SCAN; i++){surfaceCloudScan->clear();for (int j = 0; j < 6; j++){int sp = (cloudInfo.startRingIndex[i] * (6 - j) + cloudInfo.endRingIndex[i] * j) / 6;int ep = (cloudInfo.startRingIndex[i] * (5 - j) + cloudInfo.endRingIndex[i] * (j + 1)) / 6 - 1;if (sp >= ep)continue;std::sort(cloudSmoothness.begin()+sp, cloudSmoothness.begin()+ep, by_value());int largestPickedNum = 0;for (int k = ep; k >= sp; k--){int ind = cloudSmoothness[k].ind;if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] > edgeThreshold){largestPickedNum++;if (largestPickedNum <= 20){cloudLabel[ind] = 1;cornerCloud->push_back(extractedCloud->points[ind]);} else {break;}cloudNeighborPicked[ind] = 1;for (int l = 1; l <= 5; l++){int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}for (int l = -1; l >= -5; l--){int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}}}for (int k = sp; k <= ep; k++){int ind = cloudSmoothness[k].ind;if (cloudNeighborPicked[ind] == 0 && cloudCurvature[ind] < surfThreshold){cloudLabel[ind] = -1;cloudNeighborPicked[ind] = 1;for (int l = 1; l <= 5; l++) {int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l - 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}for (int l = -1; l >= -5; l--) {int columnDiff = std::abs(int(cloudInfo.pointColInd[ind + l] - cloudInfo.pointColInd[ind + l + 1]));if (columnDiff > 10)break;cloudNeighborPicked[ind + l] = 1;}}}for (int k = sp; k <= ep; k++){if (cloudLabel[k] <= 0){surfaceCloudScan->push_back(extractedCloud->points[k]);}}}surfaceCloudScanDS->clear();downSizeFilter.setInputCloud(surfaceCloudScan);downSizeFilter.filter(*surfaceCloudScanDS);*surfaceCloud += *surfaceCloudScanDS;}}void freeCloudInfoMemory(){cloudInfo.startRingIndex.clear();cloudInfo.endRingIndex.clear();cloudInfo.pointColInd.clear();cloudInfo.pointRange.clear();}void publishFeatureCloud(){// free cloud info memoryfreeCloudInfoMemory();// save newly extracted featurescloudInfo.cloud_corner  = publishCloud(pubCornerPoints,  cornerCloud,  cloudHeader.stamp, lidarFrame);cloudInfo.cloud_surface = publishCloud(pubSurfacePoints, surfaceCloud, cloudHeader.stamp, lidarFrame);// publish to mapOptimizationpubLaserCloudInfo.publish(cloudInfo);}
};int main(int argc, char** argv)
{ros::init(argc, argv, "lio_sam");FeatureExtraction FE;ROS_INFO("\033[1;32m----> Feature Extraction Started.\033[0m");ros::spin();return 0;
}

这篇关于【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147560

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too