ElasticSearch底层原理简析

2024-09-08 07:18

本文主要是介绍ElasticSearch底层原理简析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.ElasticSearch简述
ElastiaSearch(以下简称ES)是一个基于Lucene的搜索服务器,它提供了一个分布式多用户能力的全文搜索引擎,支持RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。ES设计用于云计算中,能够进行实时搜索,支持PB级搜索,具有稳定,可靠,快速,安装使用方便等优点。从2016年开始,使用量已经超越solr。目前京东互联网医院对医院、医生、问诊单的搜索;京东多药城b2c处方药订单的搜索等均已依赖ES进行。
本文从倒排索引、相关度分数计算、分布式架构、JavaAPI常见用法等几个方面简要解析ES底层原理及基本用法,希望给读者提供有益帮助。

2.倒排索引
2.1理解倒排索引
ES使用倒排索引的结构进行全文快速搜索,一个倒排索引由文档中所有不重复的列表构成,对于每一个单词,有一个包含他的文档列表。本小节主要以京东互联网医院医院信息为例介绍倒排索引的存储方式及数据存储标准化规则。
如下表所示,假设文档集合中包含5个文档,左边对应文档编号,右边文档内容,我们的任务就是对这个文档集合建立倒排索引。
文档编号 文档内容
1 {“hospitalName”:”北京大学第三附属医院”}
2 {“hospitalName”:”北京协和医院”}
3 {“hospitalName”:”解放军总医院第一附属医院”}
4 {“hospitalName”:”Peking University Third Hospital”}
5 {“hospitalName”:”Peking Union Medical College Hospital”}

(1)首先利用中、英文分词器从所有文档中提取不重复的单词,每一个单词对应有一个ID和含有这个单词的文档ID,这样可以很清晰的看出单词及对应的文档,如下表所示。
单词ID 单词 文档id
1 医院 1、2、3
2 北京 1、2
3 北京大学 1
4 第三 1
5 附属 1、3
6 协和 2
7 解放军 3
8 第一 3
9 总 3

(2)索引系统还可以记录除此之外的很多信息,下图还记录了单词频率信息(TF),即单词在每个文档中出现的次数。这个信息是用户为词条信息在搜索时,计算查询和文档相似程度(相关度分数)是一个很重要的计算因子。
单词ID 单词 文档Id:出现次数
1 医院 (1:1)、(2:1)、(3:2)
2 北京 (1:1)、(2:1)
3 北京大学 (1:1)
4 第三 (1:1)
5 附属 (1:1)、(3:1)
6 协和 (2:1)
7 解放军 (3:1)
8 第一 (3:1)
9 总 (3:1)

(3)还可以记录单词在文档中出现的位置
例如:(1,<8>,1)代表“医院”这个单词在ID为1、位置为8的文档中的出现了1次。
单词ID 单词 文档id,<位置>,出现次数
1 医院 (1,<8>,1)、(2<5>1)、(3<5,11>2)
… … …

显然,利用倒排索引,我们可以很快定位到文档,从而提高用户对词条的检索速度。
2.2标准化规则(normalization)
为解决词条检索时词条命中率问题,ES在建立倒排索引时运用标准化规则即针对存储的索引词条进行一些相关预处理再作为索引进行存储。
为了便于理解,此部分利用英文文档解释倒排索引的标准化规则。
例如:通常情况下,在搜索“Third”、“Hospital”这两个单词时候,文档4两个单词都出现了,计数为2;文档5只有“Hospital”这个单词出现了,计数为1,所以文档4命中率高,排名靠前。
Term Doc_4 Doc_5
Third 1 0
Hospital 1 1
Peking 1 1
Total 3 2

但是这样搜索就会存在下列问题:
(1)”Third”与”third” 用户认为是相同单词,但是首字母小写可能搜不到内容。
(2)“hospitals”与”hospital”有相同的词根,如果存储了”hospitals”,那么”hospital”可能检索不到 。
(3)“piking”与”beijing”为相同意思的词,”beijing”可能检索不到。
基于以上问题,ES在建立倒排索引时,会对拆分的各个单词进行相应

这篇关于ElasticSearch底层原理简析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147477

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

Redis分布式锁中Redission底层实现方式

《Redis分布式锁中Redission底层实现方式》Redission基于Redis原子操作和Lua脚本实现分布式锁,通过SETNX命令、看门狗续期、可重入机制及异常处理,确保锁的可靠性和一致性,是... 目录Redis分布式锁中Redission底层实现一、Redission分布式锁的基本使用二、Red

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、