基于YOLO8的图片实例分割系统

2024-09-08 06:28

本文主要是介绍基于YOLO8的图片实例分割系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 在线体验
  • 快速开始
  • 一、项目介绍篇
    • 1.1 YOLO8
    • 1.2 ultralytics
    • 1.3 模块介绍
      • 1.3.1 scan_task
      • 1.3.2 scan_taskflow.py
      • 1.3.3 segment_app.py
  • 二、核心代码介绍篇
    • 2.1 segment_app.py
    • 2.2 scan_taskflow.py
  • 三、结语

代码资源:计算机视觉领域YOLO8技术的图片实例分割实现

在线体验

  • 基于YOLO8的图片实例分割系统
    在这里插入图片描述

在这里插入图片描述

  • 基于opencv的摄像头实时图片实例分割
    在这里插入图片描述

快速开始

  1. 创建anaconda环境
conda create -n XXX python=3.10
  1. pytorch安装
# 查看cuda版本(示例为:11.8)
nvcc -V

在这里插入图片描述

# 安装对应版本的pytorch
# 官网:https://pytorch.org/# pip安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118# conda安装,建议配置conda国内镜像源
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

在这里插入图片描述

  1. 其他依赖包安装
pip install -r ./requirements-segment.txt
  1. 网页界面如下,可在示例图片中快速进行试验
python segment_app.py

在这里插入图片描述

一、项目介绍篇

在深度学习和计算机视觉的交汇点上,YOLO8以其创新的架构和优化的性能,成为了图像实例分割领域的佼佼者。本项目依托于YOLO8算法,开发了一个先进、用户友好的图像实例分割平台,致力于为客户提供一个高效且易于集成的解决方案。通过直观的操作界面和强大的功能集合,用户可以便捷地执行图像实例分割任务,无论是在云平台还是个人设备上。

1.1 YOLO8

  • YOLO8是最新的图像实例分割算法,延续了YOLO(You Only Look Once)系列的创新精神。它不仅继承了YOLO系列算法的速度和效率,还通过一系列创新性的改进,使其能够处理更加复杂的实例分割任务。YOLO8通过引入先进的网络架构和训练技术,显著提升了分割的精确度和稳定性,特别是在处理小物体和重叠物体时表现出色。
  • YOLO8算法的主要创新点包括:
    1. 先进的网络架构:YOLO8采用了更复杂的网络结构,通过增加网络深度和宽度,增强了对图像特征的捕捉能力,从而更准确地进行实例分割。
    2. 精细化的锚框系统:YOLO8对锚框机制进行了精细化调整,使其能够更灵活地适应各种尺寸和形状的物体,有效降低了分割错误。
    3. 创新的数据增强策略:通过采用一系列创新的数据增强技术,YOLO8提升了模型对多样化场景的适应性,增强了其在不同环境下的表现。
    4. 高效的训练流程:YOLO8引入了优化的损失函数和训练算法,不仅加快了训练过程,还确保了模型在实例分割任务上的高性能。
  • YOLO8的这些创新使其在需要实时处理的领域,如医疗影像分析、工业自动化检测等,展现出巨大的应用潜力。尽管YOLO8的完整细节和性能数据还未完全公开,但其在图像实例分割领域的突破已经吸引了学术界和工业界的广泛关注。

1.2 ultralytics

  • Ultralytics是一家专注于计算机视觉和人工智能技术的公司,以其开发的高性能目标检测模型YOLO(You Only Look Once)而闻名。YOLO模型以其快速和准确的目标检测能力在业界获得了广泛认可,特别是在需要实时处理的场合,如视频监控、自动驾驶和工业自动化等领域。
  • Ultralytics的YOLO算法通过单次前向传播即可预测图像中的物体位置和类别,与传统的多步骤检测方法相比,大大提高了检测速度。随着YOLO算法的迭代发展,Ultralytics不断推出新版本,如YOLOv3、YOLOv4、YOLOv5等,每个版本都在准确性、速度和易用性方面进行了优化。
  • 除了目标检测,Ultralytics还提供其他AI解决方案,包括图像分割、数据标注工具和模型部署服务。公司致力于推动AI技术的创新和应用,帮助企业实现智能化转型。Ultralytics的技术和产品因其高效性和可靠性,在全球范围内拥有众多用户和合作伙伴。

1.3 模块介绍

在这里插入图片描述

1.3.1 scan_task

  • 构建了执行的任务,用于为scan_taskflow提供可执行对象

1.3.2 scan_taskflow.py

  • 基于open-cv2的本地界面系统

1.3.3 segment_app.py

  • gradio页面代码

二、核心代码介绍篇

2.1 segment_app.py

import cv2
import gradio as gr
from scan_task import ScanSegmentscan_model = ScanSegment(version='YOLOv8n', use_gpu=False)def segment_scan(frame, show_box, box_color, text_color, text_size=50, y_pos=0):'''show_box: 是否显示检测框box_color: 检测框颜色 默认:(0, 255, 0)text_color: 显示文字颜色 默认:(0, 0, 255)text_size: 显示文字大小 默认:20y_pos: y轴位置偏移量 默认:0'''# 将 16进制 颜色表示式转换为 RGB 格式# 将 16进制 颜色表示式转换为 RGB 格式box_color = tuple(int(box_color[i:i + 2], 16) for i in (1, 3, 5))text_color = tuple(int(text_color[i:i + 2], 16) for i in (5, 3, 1))frame, _ = scan_model.run(frame, show_box=show_box, box_color=box_color,text_color=text_color, text_size=text_size, y_pos=y_pos)return framedef show_box_change(show_box):if show_box:return gr.update(visible=True)else:return gr.update(visible=False)if __name__ == '__main__':examples = [[cv2.imread('./examples/image_detection.jpg')]]with gr.Blocks() as demo:with gr.Tabs():# 图片分割with gr.Tab(label='图片实例分割') as tab1:gr.Markdown(value="# 图片实例分割")with gr.Row(variant="panel"):with gr.Column():img_input1 = gr.Image(label="上传图片输入", mirror_webcam=False)show_box = gr.Checkbox(label="显示检测框", value=False)with gr.Row(visible=False, variant="panel") as box_config:box_color = gr.ColorPicker(label="检测框颜色", value='#00FF00')text_color = gr.ColorPicker(label="检测文字颜色", value='#FF0000')text_size = gr.Slider(20, 50, value=20, step=1, label="检测框文字大小")y_pos = gr.Slider(-50, 50, value=0, step=1, label="检测框文字偏移量")with gr.Row(variant="panel"):submit_bn1 = gr.Button(value='上传')clear_bn1 = gr.ClearButton(value='清除')img_out1 = gr.Image(label="图片实例分割输出", mirror_webcam=False)# 添加演示用例gr.Examples(label='上传示例图片', examples=examples, fn=segment_scan,inputs=[img_input1, show_box, box_color, text_color, text_size, y_pos],outputs=img_out1,cache_examples=False)# 检测框展示开关show_box.change(fn=show_box_change, inputs=show_box, outputs=box_config)# 上传图片分割submit_bn1.click(fn=segment_scan, inputs=[img_input1, show_box, box_color, text_color, text_size, y_pos],outputs=img_out1)# 清除图片clear_bn1.add([img_input1, img_out1])# 摄像头实时目标检测with gr.Tab(label='摄像头实时图片实例分割') as tab3:gr.Markdown(value="# 摄像头实时图片实例分割")with gr.Column(variant='panel') as demo_scan:with gr.Row(variant="panel"):img_input3 = gr.Image(label="实时输入", sources=["webcam"],mirror_webcam=False, streaming=True)img_out3 = gr.Image(label="图片实例分割输出", sources=["webcam"],mirror_webcam=False, streaming=True)img_input3.stream(fn=segment_scan, inputs=[img_input3, show_box, box_color, text_color, text_size, y_pos],outputs=img_out3)demo.launch()
  1. 此段代码主要是用于生成前端页面,以及配置按钮点击事件触发时的回调函数
  2. 可配置参数包括:use_gputext_colortext_sizey_pos
    1. use_gpu: 是否使用gpu
    2. box_color:检测框颜色
    3. text_color:检测文字颜色 默认:(0, 0, 255)
    4. text_size:检测文字大小 默认:20
    5. y_pos:y轴位置偏移量 默认:0

2.2 scan_taskflow.py

class ScanTaskflow:def __init__(self, task: str, video_index=0, win_name='Scan XXX', win_width=800, win_height=600, **kwargs):..初始化摄像头扫描对象,设置窗口尺寸等属性..def run(self, **kwargs):..开启摄像头,进行检测任务..if __name__ == '__main__':# 启动默认的图像实例分割scanTaskflow = ScanTaskflow(task='scan_segment',version='YOLOv8n', use_gpu=True,video_index=0, win_name='segment',win_width=640, win_height=480)scanTaskflow.run(text_color=(0, 255, 0), y_pos=0)
  1. __init__ 用于预加载项目所需模型
  2. run 是检测系统的核心方法,用于将视频的实时帧进行实例分割

三、结语

  • 本项目提供了一个基于YOLO8算法的图片实例分割系统,它不仅易于部署和使用,而且具备高性能和高灵活性。我们相信,随着技术的不断进步和社区的积极参与,本项目将能够为更多用户提供价值,推动图片实例分割技术的发展。如果您在使用过程中遇到任何问题,欢迎在ModelScope创空间-基于YOLO8的图片实例分割系统上提出issue,我们会及时为您解答。
  • 希望本项目能够成为您在图片实例分割领域的得力助手。如果您觉得本项目对您有帮助,请给项目点个star,并持续关注我的个人主页ModelBulider的个人主页

这篇关于基于YOLO8的图片实例分割系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147370

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压