代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II

2024-09-08 05:28

本文主要是介绍代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II

1.题目

1.1递增子序列

  • 题目链接:491. 非递减子序列 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html

  • 解题思路:回溯

    • 用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

      在这里插入图片描述

  • 代码:

    class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums, 0);return result;}void backtracking(int[] nums, int startIndex) {if(path.size() >= 2){result.add(new ArrayList<>(path));}Set<Integer> tempSet = new HashSet<>();// 使用set对本层元素进行去重for (int i = startIndex; i < nums.length; i++) {if((!path.isEmpty() && nums[i] < path.get(path.size() - 1)) || tempSet.contains(nums[i])){continue;}tempSet.add(nums[i]);path.add(nums[i]);backtracking(nums,i + 1);path.remove(path.size() - 1);}}
    }
    
  • 总结:

    • 本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!
    • 数组,set,map都可以做哈希表,而且数组干的活,map和set都能干,但如果数值范围小的话能用数组尽量用数组

1.2全排列

  • 题目链接:46. 全排列 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0046.%E5%85%A8%E6%8E%92%E5%88%97.html

  • 解题思路:回溯

    • 以[1,2,3]为例,抽象成树形结构如下:

      在这里插入图片描述

    • 回溯三部曲

      • 递归函数参数

        List<List<Integer>> result = new ArrayList<>();
        List<Integer> path = new ArrayList<>();
        void backtracking(int[] nums,boolean[] used)
        
      • 递归终止条件

        if(path.size() == nums.length){result.add(new ArrayList<>(path));return;
        }
        
      • 单层搜索的逻辑

        for(int i = 0;i < nums.length;i++){if(used[i] == true){continue;}path.add(nums[i]);used[i] = true;backtracking(nums,used);used[i] = false;path.remove(path.size() - 1);
        }
        
  • 代码:

    class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {boolean[] used = new boolean[nums.length];backtracking(nums,used);return result;}void backtracking(int[] nums,boolean[] used){if(path.size() == nums.length){result.add(new ArrayList<>(path));return;}for(int i = 0;i < nums.length;i++){if(used[i] == true){continue;}path.add(nums[i]);used[i] = true;backtracking(nums,used);used[i] = false;path.remove(path.size() - 1);}}
    }
    
  • 总结:

    • 每层都是从0开始搜索而不是startIndex
    • 需要used数组记录path里都放了哪些元素了

1.3全排列 II

  • 题目链接:47. 全排列 II - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0047.%E5%85%A8%E6%8E%92%E5%88%97II.html

  • 解题思路:回溯

    • 去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

    • 以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

      在这里插入图片描述

    • 图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

  • 代码:

    class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length];Arrays.sort(nums);backtracking(nums, used);return result;}void backtracking(int[] nums, boolean[] used) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == true) {continue;}path.add(nums[i]);used[i] = true;backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
    }
    
  • 总结:

    • 一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

这篇关于代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147243

相关文章

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服