[数据结构] 哈希结构的哈希冲突解决哈希冲突

2024-09-08 04:28

本文主要是介绍[数据结构] 哈希结构的哈希冲突解决哈希冲突,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题:[C++] 哈希结构的哈希冲突 && 解决哈希冲突

@水墨不写bug



目录

一、引言

        1.哈希

        2.哈希冲突

        3.哈希函数

 二、解决哈希冲突

1.闭散列

 I,线性探测

II,二次探测

2.开散列


正文开始:

一、引言

        哈希表是一种非常实用而且好用的关联式容器,如果你刷过不少题,一定会惊叹哈希竟然能解决如此多的实际问题。

        但是哈希表令人头疼的问题是哈希冲突的问题。在具体讲解之前,我们先铺垫引入几个概念:哈希,哈希函数,哈希冲突。

        1.哈希

         哈希结构最明显的特点是高效。在以往的顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log2 N),搜索的效率取决于搜索过程中元素的比较次数。

最优的搜索方法:不经过任何比较,一次直接从表中得到要搜索的元素。

        如果存在一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码(key)之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

        当我们向该结构中:

插入元素的时候:根据插入元素的关键码,根据这个关键码来通过某种映射关系来得到哈希表中对应的存储位置,然后将这个元素存入哈希表的对应位置。

搜索元素的时候:对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在哈希表中按照此位置进行查找,若关键码相等,则搜索成功。

        这种存储结构和方法统称为哈希

        哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表).

        2.哈希冲突

        我们可以设计一个简单的哈希表:10个位置,哈希函数也是非常简单的除留取余(插入元素除以表的大小,就通过哈希函数得到了这个值应该在表中存储的位置):

        用该方法进行搜索可以一次找到存储对应值的位置,因此搜索的速度比较快。

但是,如果向上面这样的哈希表中插入14呢?

        我们发现14的位置被4占据了,这就是哈希冲突。

        即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

        把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”.

        3.哈希函数

 引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:

        1.哈希函数的定义域必须包括需要存储的全部关键码,同时如果散列表允许有m个地址时,其值域必须在0到m-1之间。

        2.哈希函数计算出来的地址能尽可能的均匀分布在整个空间中。

        3.哈希函数应该比较简单

         我们需要了解一下常见的哈希函数的设计方法:

1. 直接定址法

        取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B

        优点:简单、均匀、一般不会出现哈希冲突

        缺点:需要事先知道关键字的分布情况

        使用场景:适合查找比较小且连续的情况

2. 除留余数法.

        设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址.

        优点:适用情况广泛

        缺点:会出现哈希冲突,需要解决哈希冲突的问题

 二、解决哈希冲突

        哈希冲突的解决方法常用的有两种:闭散列与开散列。

1.闭散列

         闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

        寻找下一个“空位置”也有多种方法,这里介绍常见的两种:线性探测,二次探测。

 I,线性探测

         在上面的例子中,我们想要插入14,本来14经过哈希函数计算得到的位置是4,但是4这个位置已经被占据了。

        线性探测就是:从发生冲突的位置开始,一个一个向后探测,直到寻找到下一个空位置为止。

        a.插入

        首先通过哈希函数获取待插入元素在哈希表中的位置。 如果该位置中没有元素则直接插入新元素;如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素:

        b.删除

        采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。

        比如:删除元素4,如果直接删除掉,14查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

        我们可以通过一个标记状态的变量来表示哈希表内的数据的状态:存在,删除,空(EXIST,DELETE,EMPTY):

enum STATE
{EXIST,DELETE,EMPTY
}    

        在封装哈希表中每一个数据的类型时,在每个数据结构体内加入一个表示状态的变量即可。对于一个哈希表的位置,如果没有元素插入过,状态为EMPTY;

        如果存在元素,状态为EXIST;

        如果原来存在元素,但是之后删除了,状态为DELETE;

不同的状态对于将来查找(find)的处理会有影响。 

II,二次探测

         通过了解上面的线性探测,你自然也会发现线性探测的困难:

        产生冲突的数据堆积在一块,这与其一个一个向下找空位置有关系,找空位置的方式就是挨着往后逐个去找.

        二次探测的找下一个空位置的方法就大不相同了:二次探测向下找的方式是依次加上位置差的平方:

H_i = (H_0 + i^2 )% m 或者H_i = (H_0 - i^2 )% m

        其中:i = 1,2,3…, H_0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

        对于上面的例子,如果使用二次探测,插入的过程:

插入 44 的过程:
    1.44 的初始哈希值是  14 % 10 = 4 ,但是位置 4 已经被占用了。
    2.触发二次探测,从  i = 1  开始。对于  i = 1 ,探测位置是:(4 + 1^2) % 10 = 5 但位置 5 也被占用了。
    3.继续探测, i = 2  时,探测位置是:(4 + 2^2) % 10 = 8

位置 8 是空的,所以 14 被插入到位置 8。

        对于闭散列而言,哈希表是需要扩容的,因为我们每次插入的时候都需要保证哈希表有空余的位置,所以我们需要一个判断哈希表内数据 装满程度的标志因子:载荷因子

        载荷因子记为a,a越大,表明填入表中的数据越多,产生哈希冲突的可能就越大。反之则相反。

        对于开放定址法,载荷因子需要严格控制在0.7-0.8以下。当载荷因子接近这个值时,就需要扩容。

2.开散列

         开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中:

        

        当插入14时,对4这个位置的链表头插即可:

 

 以上是哈希结构解决哈希冲突的方法。


完~

未经作者同意禁止转载 

这篇关于[数据结构] 哈希结构的哈希冲突解决哈希冲突的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147113

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe