Java stream使用与执行原理

2024-09-08 04:28
文章标签 java 使用 原理 执行 stream

本文主要是介绍Java stream使用与执行原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

stream简介

Stream: A sequence of elements supporting sequential and parallel aggregate operations

stream为sequential即单线程串行操作,parallelStream支持并行操作,本文只讨论sequential的stream。

stream常用操作

    @Datastatic class Course {private Long number;private LocalDateTime beginTime;private List<Long> studentIds;}public void streamOperations(List<Course> courses) {// 映射并去重List<Long> courseNumbers = courses.stream().filter(Objects::nonNull).map(Course::getNumber).distinct().collect(Collectors.toList());// 先按开始时间排序后按number排序List<Course> sortedCourses = courses.stream().sorted(Comparator.comparing(Course::getBeginTime).thenComparing(Course::getNumber)).collect(Collectors.toList());// 根据number组成map, 如果有相同的number会抛异常Map<Long, Course> num2Lesson1 = courses.stream().collect(Collectors.toMap(Course::getNumber, Function.identity()));// 根据number组成map, 如果有相同的number会执行降级逻辑Map<Long, Course> num2Lesson2 = courses.stream().collect(Collectors.toMap(Course::getNumber, Function.identity(), (v1, v2) -> v1));// 根据number聚合Map<Long, List<Course>> num2Lessons = courses.stream().filter(Objects::nonNull).collect(Collectors.groupingBy(Course::getNumber));// 根据number聚合某个字段Map<Long, List<LocalDateTime>> number2BeginTimes = courses.stream().filter(Objects::nonNull).collect(Collectors.groupingBy(Course::getNumber,Collectors.mapping(Course::getBeginTime, Collectors.toList())));// 根据number找到number下最大beginTime的CourseMap<Long, Optional<Course>> number2MaxBeginTimeCourse = courses.stream().filter(r -> Objects.nonNull(r.getBeginTime())).collect(Collectors.groupingBy(Course::getNumber, Collectors.maxBy(Comparator.comparing(Course::getBeginTime))));// 获取course下所有的studentIdList<Long> allStudentIds = courses.stream().map(Course::getStudentIds).flatMap(Collection::stream).distinct().collect(Collectors.toList());}

stream原理

基本原理

        list.stream().filter(Objects::nonNull).map(World::toString).distinct().collect(Collectors.toList());

以上面的处理为例,分别经过了过滤->映射->去重->聚合三个操作,在stream内部会通过一个链表将这三个操作联系起来,一个操作被称为一个stage(或pipeline),每个stage会指向上下游的stagesourceStage(即哨兵头节点),如下图所示:

在这里插入图片描述

对应的在AbstractPipeline类中有三个字段分别引用链表上下游节点和链表的哨兵头节点:

abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> {// Backlink to the head of the pipeline chain (self if this is the source stage).private final AbstractPipeline sourceStage;// The "upstream" pipeline, or null if this is the source stage.private final AbstractPipeline previousStage;  // The next stage in the pipeline, or null if this is the last stage. Effectively final at the point of linking to the next pipeline.      private AbstractPipeline nextStage;  ...    
}

stage可分为3类(可以在各个Reference类中找到下面3个内部类):

  • Header: 哨兵头节点,用户无需感知
  • StatelessOp: 无状态stage,如过滤
  • StatefulOp: 有状态stage,如聚合

对应的在ReferencePipeline中有3个内部类:

abstract class ReferencePipeline<P_IN, P_OUT>extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>implements Stream<P_OUT>  {static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {...}abstract static class StatelessOp<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {...}abstract static class StatefulOp<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {...}  ...     
}

以上提到的三种名词:pipeline,stage,op 都是指代链表里的一个操作节点,即 pipeline == stage == op,类似一个生物学人具有多个社会学身份。

再来看看代码实现,其uml类图如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
Java对BaseStream接口的实现是 AbstractPipelineBaseStream可分为基于引用类型和基于基础类型,其中基于引用类型实现为ReferencePipleline,基于数值基础类型分别有实现LongPiplelineIntPiplelineDoublePipleline

pipeline中封装了stream sourceintermediate operations,一个pipeline代表一次操作,比如过滤、去重等,当 pipeline 被引用时则称为stage,多个stage可以通过Fluent Api组装起来实现流式处理,组装的过程即是构建一个链表的过程。

当我们调用一个集合的stream()方法时,会调用StreamSupport#stream方法构造一个header pipeline:

public interface Collection<E> extends Iterable<E> {...default Stream<E> stream() {// 传入Collection自定义个Spliterator,返回一个 header pipelinereturn StreamSupport.stream(spliterator(), false);}...// Collection自定义的Spliteratordefault Spliterator<E> spliterator() {return Spliterators.spliterator(this, 0);}...
}public final class StreamSupport {...// 生成 header pipelinepublic static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {Objects.requireNonNull(spliterator);return new ReferencePipeline.Head<>(spliterator,StreamOpFlag.fromCharacteristics(spliterator),parallel);}...
}
java.util.Spliterator

两个问题:

  1. Spliterator是干嘛的?
  2. stream为什么需要Spliterator?

An object for traversing and partitioning elements of a source.

可以看到Spliterator支持对数据进行遍历和分割,对应的在接口中有tryAdvance + forEachRemaining用于遍历,有trySplit支持分割。

trySplit方法返回的是Spliterator,所以Spliterator是一种类似细胞分裂的方式执行,对一个ArrayList进行分割:

        List<Integer> list = new ArrayList<>();for (int i = 1; i <= 5; i++) {list.add(i);}Spliterator<Integer> sourceSpliterator = list.spliterator();Assertions.assertEquals(5, sourceSpliterator.estimateSize());// 执行一次,输出1,剩下2345四个元素可分割和遍历sourceSpliterator.tryAdvance(i -> Assertions.assertEquals(1, i));Assertions.assertEquals(4, sourceSpliterator.estimateSize());Spliterator<Integer> subSpliterator1 = sourceSpliterator.trySplit();// 2 3Assertions.assertEquals(2, sourceSpliterator.estimateSize());// 4 5Assertions.assertEquals(2, subSpliterator1.estimateSize());List<Integer> list2 = new ArrayList<>();list2.add(1);// 只有一个元素时进行split,此时spliterator1==nullSpliterator<Integer> spliterator1 = list2.spliterator().trySplit();Assertions.assertNull(spliterator1);

Spliterator只对未遍历过的元素(未被tryAdvance执行到且未执行forEachRemaining)执行trySplit,如果没有trySplit返回null, 同样stream流只运行执行一次。

同时Spliterator有以下特性,可以包含多个:

  • ORDERED: 遍历和分割保证顺序
  • DISTINCT: 非重复
  • SORTED: 遍历和分割时以一种顺序执行,通过getComparator方法提供自定义比较器
  • SIZED: estimateSize放回返回固定值
  • SUBSIZED: trySplit之后所有的Spliterator同时支持SIZED和SUBSIZED特性
  • IMMUTABLE: 遍历和分割的对象不能有结构变更
  • CONCURRENT: 支持多线程安全遍历和分割

所有特性以bitset的方式记录在一个int类型值中,通过characteristics方法获取。

那么为什么stream要用Spliterator呢?

Spliterator是并行流(Parallel Stream)背后的关键机制。当调用集合的parallelStream()方法时,该方法内部会创建一个Spliterator来遍历和分割集合中的元素。然后,Java的并行框架(如ForkJoinPool)会利用这些Spliterator来分配任务给多个线程,以实现并行处理。

java.util.stream.Sink

stream的操作都在该接口中实现

An extension of Consumer used to conduct values through the stages of a stream pipeline,
with additional methods to manage size information, control flow, etc.

通常使用内部抽象类ChainedReference构建一个Sink链,ChainedReference 中指向链条的下一个Sink
stream支持多元素操作如sorted和单元素操作如map,如何组合这两种操作呢?stream即是通过Sink接口实现。

Sink包含三个主要接口:

interface Sink<T> extends Consumer<T> {// 调用该接口表示stage开始接收数据,size表示要接受的数据个数,-1表示未知或无限制default void begin(long size) {}// 调用该接口表示stage数据接受完毕,当需要操作所有数据时,可在这里操作,比如sorted就在这里做排序default void end() {}// 调用该接口表示stage开始操作单个数据default void accept(int value)...
}

注意以上接口都是default,如果子接口(如TerminalSink)没实现表示默认不做操作。

以以下stream流为例:


list = [3,2,5]list.stream().filter(Objects::nonNull).map(i -> i + "hello").distinct().sorted().forEach(System.out::println);

当我们调用list.stream.filter.map.distinct.sorted.collect时,
会首先正向构建一个stage操作双向链表,即filter <-> map <-> distinct <-> sorted <-> collect
最后在链接TerminalOp类型的stage时(这里是collect)会调用AbstractPipeline#wrapSink方法构建Sink单向链表,Sink单向链表的指向顺序也是filter -> map -> distinct -> sorted -> collect,但其构建顺序是反向的,即collect -> sorted -> distinct -> map -> filter,如下图所示:

在这里插入图片描述

代码如下:

abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> {...// .stream()执行时表示中间操作stage的个数// .parallelStream()执行时表示前面有状态的中间操作个数,因为有状态依赖的必须sequential执行private int depth;@Overridefinal <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {Objects.requireNonNull(sink);for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; // 前面的stagep=p.previousStage) {sink = p.opWrapSink(p.previousStage.combinedFlags, sink);}return (Sink<P_IN>) sink;}...    
}

来模拟[3,2,5]作为输入时的stream流程:
在这里插入图片描述

这篇关于Java stream使用与执行原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147108

相关文章

MySQL分区表的具体使用

《MySQL分区表的具体使用》MySQL分区表通过规则将数据分至不同物理存储,提升管理与查询效率,本文主要介绍了MySQL分区表的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、分区的类型1. Range partition(范围分区)2. List partition(列表分区)3. H

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

SpringBoot 中 CommandLineRunner的作用示例详解

《SpringBoot中CommandLineRunner的作用示例详解》SpringBoot提供的一种简单的实现方案就是添加一个model并实现CommandLineRunner接口,实现功能的... 目录1、CommandLineRunnerSpringBoot中CommandLineRunner的作用

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur