数据结构——双链表实现和注释浅解

2024-09-08 03:44

本文主要是介绍数据结构——双链表实现和注释浅解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于双链表的基础部分增删查改的实现和一点理解,写在注释里~ 


前言 

 

 

 

 

 

 


浅记

 

1. 哨兵位的节点不能被删除,节点的地址也不能发生改变,所以是传一级指针

2. 哨兵位并不存储有效数据,所以它并不是有效节点

3. 双向链表为空时,说明只剩下一个头节点(哨兵位)


 List.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>typedef int LTDataType;
//定义双向链表节点的结构
typedef struct ListNode
{LTDataType data;//存储的数据struct ListNode* next;//指向下一个节点的指针struct ListNode* prev;//指向前一个节点的指针
}LTNode;//声明双向链表中提供的方法//申请节点
LTNode* LTBuyNode(LTDataType x);//初始化
//void LTInit(LTNode** pphead);
LTNode* LTInit();
//销毁
void LTDesTroy(LTNode* phead);
//打印
void LTPrint(LTNode* phead);//插入数据之前,链表必须初始化到只有一个头结点的情况
// 
//不改变哨兵位的地址,因此传一级即可
//尾插
void LTPushBack(LTNode* phead, LTDataType x);
//头插
void LTPushFront(LTNode* phead, LTDataType x);//尾删
void LTPopBack(LTNode* phead);
//头删
void LTPopFront(LTNode* phead);//在pos位置之后插入数据
void LTInsert(LTNode* pos, LTDataType x);
//删除pos节点
void LTErase(LTNode* pos);
//查找
LTNode* LTFind(LTNode* phead, LTDataType x);


 List.c

尾插

//哨兵位的节点不能被删除,节点的地址也不能发生改变,所以是传一级指针//尾插
//phead:哨兵位
void LTPushBack(LTNode* phead, LTDataType x)
{//断言assert(phead);//申请新节点LTNode* newnode = LTBuyNode(x);//phead  phead->prev(前尾节点)  newnode//先将新节点的prev指针指向哨兵位的prev指针(前尾节点)//再把新节点的next指针指向哨兵位newnode->prev = phead->prev;newnode->next = phead;//先将哨兵位的prev指针(前尾节点)指向新节点//再把哨兵位的prev指针指向新节点phead->prev->next = newnode;phead->prev = newnode;}

头插

在第一个存储有效数据的节点之前插入

//头插
//在第一个存储有效数据的节点之前插入
//先去修改不会受到影响的节点,也就是新节点(newnode)
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead newnode phead->next(第一个存储有效数据的节点d1)//新节点的next指针指向第一个存储有效数据的节点d1//新节点的prev指针指向哨兵位newnode->next = phead->next;newnode->prev = phead;//第一个存储有效数据的节点d1的prev指针指向新节点//哨兵位的next指针指向新节点phead->next->prev = newnode;phead->next = newnode;
}

尾删


//尾删
void LTPopBack(LTNode* phead)
{//链表必须有效且链表不能为空(只有一个哨兵位)assert(phead && phead->next != phead);//创建一个临时变量del,把最后一个存储有效数据的节点存放进去(d3)LTNode* del = phead->prev;//phead del->prev(d2) del(d3)//将d2的next指针指向哨兵位//把哨兵位的prev指针指向d2del->prev->next = phead;phead->prev = del->prev;//删除del(d3)节点,置为空free(del);del = NULL;
}

 

头删 

删除第一个存储有效数据的节点

//头删
//删除第一个存储有效数据的节点
void LTPopFront(LTNode* phead)
{assert(phead && phead->next != phead);//创建一个临时变量del,把最后一个存储有效数据的节点存放进去(d1)LTNode* del = phead->next;//phead del(d1) del->next(d2)//将哨兵位的next指针指向d2//把d2的prev指针指向哨兵位phead->next = del->next;del->next->prev = phead;//删除del节点free(del);del = NULL;
}

 

 汇总

#include"List.h"//data存储的数据
//next指向下一个节点的指针
//prev指向前一个节点的指针//哨兵位的节点不能被删除,节点的地址也不能发生改变,所以是传一级指针
//哨兵位并不存储有效数据,所以它并不是有效节点//申请节点
LTNode* LTBuyNode(LTDataType x)
{LTNode* node = (LTNode*)malloc(sizeof(LTNode));if (node == NULL){perror("malloc fail!");exit(1);}node->data = x;//node的next指针和prev指针都指向node本身 自循环//哨兵位node->next = node->prev = node;return node;
}//插入数据之前,链表必须初始化到 只有一个头结点 的情况//初始化
//void LTInit(LTNode** pphead);
LTNode* LTInit()
{//初始化就是申请一个哨兵位,哨兵位是自循环和LTNode* phead = LTBuyNode(-1);return phead;
}//销毁
void LTDesTroy(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead){LTNode* next = pcur->next;free(pcur);pcur = next;}//此时pcur指向phead,而phead还没有被销毁free(phead);phead = NULL;
}//打印
void LTPrint(LTNode* phead)
{LTNode* pcur = phead->next;while (pcur != phead){printf("%d->", pcur->data);pcur = pcur->next;}printf("\n");
}//哨兵位的节点不能被删除,节点的地址也不能发生改变,所以是传一级指针//尾插
//phead:哨兵位
void LTPushBack(LTNode* phead, LTDataType x)
{//断言assert(phead);//申请新节点LTNode* newnode = LTBuyNode(x);//phead  phead->prev(前尾节点)  newnode//先将新节点的prev指针指向哨兵位的prev指针(前尾节点)//再把新节点的next指针指向哨兵位newnode->prev = phead->prev;newnode->next = phead;//先将哨兵位的prev指针(前尾节点)指向新节点//再把哨兵位的prev指针指向新节点phead->prev->next = newnode;phead->prev = newnode;}//头插
//在第一个存储有效数据的节点之前插入
//先去修改不会受到影响的节点,也就是新节点(newnode)
void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTNode* newnode = LTBuyNode(x);//phead newnode phead->next(第一个存储有效数据的节点d1)//新节点的next指针指向第一个存储有效数据的节点d1//新节点的prev指针指向哨兵位newnode->next = phead->next;newnode->prev = phead;//第一个存储有效数据的节点d1的prev指针指向新节点//哨兵位的next指针指向新节点phead->next->prev = newnode;phead->next = newnode;
}//尾删
void LTPopBack(LTNode* phead)
{//链表必须有效且链表不能为空(只有一个哨兵位)assert(phead && phead->next != phead);//创建一个临时变量del,把最后一个存储有效数据的节点存放进去(d3)LTNode* del = phead->prev;//phead del->prev(d2) del(d3)//将d2的next指针指向哨兵位//把哨兵位的prev指针指向d2del->prev->next = phead;phead->prev = del->prev;//删除del(d3)节点,置为空free(del);del = NULL;
}
//头删
//删除第一个存储有效数据的节点
void LTPopFront(LTNode* phead)
{assert(phead && phead->next != phead);//创建一个临时变量del,把最后一个存储有效数据的节点存放进去(d1)LTNode* del = phead->next;//phead del(d1) del->next(d2)//将哨兵位的next指针指向d2//把d2的prev指针指向哨兵位phead->next = del->next;del->next->prev = phead;//删除del节点free(del);del = NULL;
}//在pos位置之后插入数据
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* newnode = LTBuyNode(x);//pos newnode pos->nextnewnode->next = pos->next;newnode->prev = pos;pos->next->prev = newnode;pos->next = newnode;
}//删除pos节点
void LTErase(LTNode* pos)
{//pos理论上来说不能为phead,但是没有参数phead,无法增加校验assert(pos);//pos->prev pos pos->nextpos->next->prev = pos->prev;pos->prev->next = pos->next;free(pos);pos = NULL;
}//查找
LTNode* LTFind(LTNode* phead, LTDataType x)
{LTNode* pcur = phead->next;while (pcur != phead){if (pcur->data == x){return pcur;}pcur = pcur->next;}//没有找到return NULL;
}

Test.c 

#include"List.h"void ListTest01()
{//LTNode* plist = NULL;//LTInit(&plist);LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPrint(plist);LTNode* find = LTFind(plist, 3);//LTInsert(find, 66);LTErase(find);find = NULL;LTPrint(plist);LTDesTroy(plist);//plist = NULL;//if (find == NULL)//{//	printf("找不到!\n");//}//else {//	printf("找到了!\n");//}//LTPushFront(plist, 1);//LTPrint(plist);//LTPushFront(plist, 2);//LTPrint(plist);//LTPushFront(plist, 3);// //测试尾删//LTPopBack(plist);//LTPrint(plist);//LTPopBack(plist);//LTPrint(plist);//LTPopBack(plist);//LTPrint(plist);测试头删//LTPopFront(plist);//LTPrint(plist);//LTPopFront(plist);//LTPrint(plist);//LTPopFront(plist);//LTPrint(plist);//LTPopBack(plist);//LTPrint(plist);
}int main()
{ListTest01();return 0;
}

一点浅解,感谢观看~

这篇关于数据结构——双链表实现和注释浅解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147018

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too