Tensorflow实现与门感知机

2024-09-08 02:18
文章标签 实现 感知机 tensorflow

本文主要是介绍Tensorflow实现与门感知机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

感知机是最简单的神经网络,通过输入,进行加权处理,经过刺激函数,得到输出。通过输出计算误差,调整权重,最终,得到合适的加权函数。

今天,我通过tensorflow实现简单的感知机。

首先,初始化变量:

    num_nodes = 2
    output_units = 1
    w = tf.Variable(tf.truncated_normal([num_nodes,output_units], -0.1, 0.1))
    b = tf.Variable(tf.truncated_normal([output_units],0.1))
    x = tf.placeholder(tf.float32, shape = [None, num_nodes])
    y = tf.placeholder(tf.float32, shape = [None,output_units])


计算输出,同时设置损失函数与优化损失,这里采用sigmoid函数,可以将经过加权函数的输出归为0到1之间。采用均方差作为损失函数,如果采用交叉熵函数,交叉熵损失函数主要用于多输出的,不太合适。

    output = tf.sigmoid(tf.matmul(x,w) + b)
    cross_entropy = tf.reduce_mean(tf.square(output - y))
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)


输入训练数据进行训练,运行1000次。

 sess = tf.Session()
 sess.run(tf.global_variables_initializer())
 train_x = [[1.0,1.0],[0.0,0.0],[1.0,0.0],[0.0,1.0]]
 train_y = [[1.0],[0.0],[0.],[0.]]
 for i in range(1000):
       sess.run([train_step], feed_dict={x:train_x,y:train_y})


进行预测:

test_x = [[0.0,1.0],[0.0,0.0],[1.0,1.0],[1.0,0.0]]
print(sess.run(output, feed_dict={x:test_x}))

输出结果为[0.11,0.03,0.85,0.11],接近于[0,0,1,0]

与门感知机的实现主要是损失函数,学习率的调整,方能得到不错的结果。输入或门的数据,同样可以获得或门的模型。感知机由于无法处理非线性问题,所以无法实现异或门。

代码地址: https://github.com/summersunshine1/datamining/tree/master/perceptron

这篇关于Tensorflow实现与门感知机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1146834

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4