高精度计算(代码加解析,洛谷p1601,p1303)除法待更新

2024-09-08 01:28

本文主要是介绍高精度计算(代码加解析,洛谷p1601,p1303)除法待更新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

高精度加法

高精度减法

高精度乘法


高精度加法

我们知道在c++语言中任何数据类型都有一定的表示范围。当两个被加数很大时,正常加法不能得到精确解。在小学,我们做加法都采用竖式方法。那么我们也只需要按照加法进位的方式就能得到最终解。

  8 5 6
+ 2 5 5
-------
1 1 1 1

加法进位:

c[i] = a[i] + b[i];
if(c[i] >= 10){c[i] %= 10;c[i+1]++;
}

按位相加求和:

    int len = s1.length();int carry = 0;for(int i = len-1; i >= 0; i--){int tmp = s1[i] - '0' + s2[i] - '0' + carry;carry = tmp/10;tmp %= 10;ret = char(tmp + '0') + ret;}if(carry != 0) ret = char(carry + '0') + ret;

 完整代码:

#include<iostream>
#include<string>
using namespace std;int main()
{string s1,s2,ret;cin >> s1 >> s2;int len1 = s1.length();int len2 = s2.length();// 不论s1,s2谁短,高位补0补到一样长if(len1<len2){for(int i=1;i<=len2-len1;i++)s1="0"+s1;}else{for(int i=1;i<=len1-len2;i++)s2="0"+s2;}int len = s1.length();  //得到两个字符串的长度int carry = 0;  // 记录进位// i从字符串最后一位向前走,也就是从两个数的个位向高位走for(int i = len-1; i >= 0; i--){// 相当于c[i] = a[i] + b[i],如果c[i]>=10, c[i]%=10, c[i+1]++;int tmp = s1[i] - '0' + s2[i] - '0' + carry; //字符转换成数字,要-'0'carry = tmp/10;tmp %= 10;ret = char(tmp + '0') + ret; //把每个新位放到原字符串前面}//如果carry位不等于0,则表明两个数的最高位相加还有进位if(carry != 0) ret = char(carry + '0') + ret;  cout << ret;
}

高精度减法

类似加法,也可以用竖式求解。需要注意的是,被减数必须比减数大,同时需要处理借位。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{int a[256],b[256],c[256],lena,lenb,lenc,i;char n[256],n1[256],n2[256];memset(a,0,sizeof(a));memset(b,0,sizeof(b));memset(c,0,sizeof(c));printf("Input minuend:");	gets(n1);printf("Input subtrahend:");	gets(n2);if(strlen(n1) < strlen(n2) || (strlen(n1) == strlen(n2) && strcmp(n1,n2) < 0)){strcpy(n,n1);strcpy(n1,n2);strcpy(n2,n);cout << "-"; 	//因为交换了减数和被减数,结果为负数 }lena = strlen(n1);lenb = strlen(n2);for(i = 0; i <= lena-1; i++) a[lena-i] = int(n1[i] - '0');	//被减数放入a数组 for(i = 0; i <= lenb-1; i++) b[lenb-i] = int(n2[i] - '0');	//减数放入b数组i= 1;while(i <= lena || i <= lenb){if(a[i] < b[i]){a[i]+=10;	//高位借1 a[i+1]--;}c[i] = a[i] - b[i];	//对应位相减i++; } lenc = i;while(c[lenc] == 0 && lenc > 1) lenc--;	//最高位0不输出for(i = lenc; i >= 1; i--) cout << c[i];cout << endl;return 0; 
}

高精度乘法

类似加法,可以用竖式求乘法。在做乘法运算时,同样也有进位。同时对每一位进行乘法运算时,必须进行错位相加。

     8  5  6
*       2  5 
----------------4  2  8  0
1 7  1  2
----------------
2 1  4  0  0
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{char a1[101],b1[101];int a[101],b[101],c[10001],lena,lenb,lenc,i,j,x;memset(a,0,sizeof(a));memset(b,0,sizeof(b));memset(c,0,sizeof(c));scanf("%s",a1);scanf("%s",b1);lena = strlen(a1); lenb = strlen(b1);for(i = 0; i <= lena-1; i++) a[lena-i] = int(a1[i] - 48);	for(i = 0; i <= lenb-1; i++) b[lenb-i] = int(b1[i] - 48);	for(i = 1; i <= lena; i++){x = 0;for(j = 1; j <= lenb; j++){c[i+j-1] += a[i]*b[j] + x;	//当前乘机+上次乘机进位+原数 x = c[i+j-1] / 10;c[i+j-1] %= 10;}c[i+lenb] = x;	//进位 } lenc = lena + lenb;while(c[lenc] == 0 && lenc > 1)	lenc--;	//删除前导0 for(i = lenc; i > 0; i--) cout << c[i];cout << endl; return 0; 
}

还有一种思路,把每一位的乘积和加起来先不做处理。最后再去处理计算进位。

        7    8    9
*            2    3
----------------------21   24    2714   16   18
----------------------14   37   42    271 (1) 8 (4) 1 (4) 4 (2) 7

这篇关于高精度计算(代码加解析,洛谷p1601,p1303)除法待更新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146721

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象