Mastering Python Scientific Computing

2024-09-08 00:32

本文主要是介绍Mastering Python Scientific Computing,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性方程组

迭代法:

雅可比迭代法

高斯赛德迭代法

非迭代法:

高斯LU矩阵分解法

高斯消元法

非线性方程组:

一维非线性方程解法:

二分法

牛顿法

割线法

插值法

逆差值法

逆二次插值法

线性分式插值法

非线性方程组解法:

牛顿法

割线法

阻尼牛顿法

Broyden法

最优化方法

应用场景

工程力学

经济学

运筹学

控制工程

石油工程

分子建模

内插法

例子:有一组机房温度的数据,时间间隔可能是固定不变的,可能不是固定不变得,估计插值计算一天剩余时间机房的温度

分段常熟内插法

线性内插法

多项式内插法

样条内插法

基于高斯过程的内插法

外插法

例子:已经获得12到65各个年龄段的用户每天上网的小时数,那么估计12岁以下和65岁以上每天上网的小时数

线性外插法

多项式外插法

锥外插法

法国曲线外插法

数值积分

辛普森法则

梯形法则

精炼梯形法则

高斯积分法则

牛顿-柯特思积分法则

高斯-勒让德积分法则

数值微分

有限差分近似法

微分求积法

有限差分系数

插值微分法

微分方程

分为两类:常微分方程(ODE)和偏微分方程(PDE)

解常微分方程:

欧拉方法

泰勒级数法

龙格-库塔法

四阶龙格-库塔法

预估-校正法

解偏微分方程:

有限元法

有限差分法

有限体积法

初值问题

常微分方程的初始值是在未知函数定义域内

边界值问题

带约束的微分方程的解必须能够同时满足微分方程的所有约束

随机数生成器

应用:

统计抽样、赌博、随机生成的设计、科学与工程领域的计算机仿真等

分类:

真随机数生成器和伪随机数生成器

统计分布生成随机数:

泊松分布

指数分布

正态分布

高斯分布

伪随机数生成器:

BBS随机数生成器

Wichmann-Hill随机数生成器

进位-互补-乘法随机数生成器

反向同余随机数生成器

ISAAC随机数生成器

滞后斐波那契随机数生成器

线性同余随机数生成器

线性反馈移位寄存器

最大周期倒数随机数生成器

梅森旋转随机数生成器

进位相乘随机数生成器

Naor-Reingold伪随机数生成器

Park-Miller随机数生成器

WELL伪随机数生成器

现成数据集

https://www.opensciencedatacloud.org/publicdata/?commons_type=General

Numpy程序包

N维度数组数据结构

文件处理

SciPy程序包

优化函数

数值分析

积分与微分

统计学

聚类和空间算法

图像处理

SymPy符号计算

多项式

微积分

方程式求解

离散数学

矩阵

几何

画图

物理学

统计学

打印

Pandas程序包

Series

DataFrame

Panel

matplotlib程序包

数据可视化

Numpy的基本对象

N维数组对象

数组属性:大小、每项大小、数据、维度

x2d = np.array(((100,200,300),(111,222,333),(123,456,789)))
print(x2d.shape)
print(x2d.dtype)
print(x2d.size)
print(x2d.itemsize)
print(x2d.ndim)
print(x2d.data)

数组基本操作

x = np.array([1,12,25,8,15,35,50,7,2,10])
print(x[3:7])
print(x[1:9:2])
print(x[0:9:3])
x = np.array([1,12,25,8,15,35,50,7,2,10])
x2d = np.array(((100,200,300),(111,222,333),(123,456,789),(125,457,791),(127,459,793),(129,461,795)))
for i in x:print(i)
for row in x2d:print(row)

数组的特殊操作

x2d = np.array(((100,200,300),(111,222,333),(123,456,789),(125,457,791),(127,459,793),(129,461,795)))
print(x2d)
print(x2d.ravel())
print(x2d.resize(3,6))
print(x2d.reshape(6,3))

与数组相关的类

矩阵子类

a = np.matrix('1 2 3;4 5 6;7 8 9')
print(a)
b = np.matrix('4 5 6;7 8 9;10 11 12')
print(b)
print(a*b)

掩码数组

x = np.array([72,79,85,90,150,-135,120,-10,60,100])
mx = ma.masked_array(x,mask=[0,0,0,0,0,1,0,1,0,0])
mx2 = ma.masked_array(x,mask=x<0)
print(x.mean())
print(mx.mean())
print(mx2.mean())

结构化数组

rectype = np.dtype({'names':['mintemp','maxtemp','avgtemp','city'],'formats':['i4','i4','f4','a30']})
a = np.array([(10,44,25.2,'Indore'),(10,42,25.2,'Mumbai'),(2,48,30,'Delhi')],dtype=rectype)
print(a[0])
print(a['mintemp'])
print(a['maxtemp'])
print(a['avgtemp'])
print(a['city'])

各种可用的通用函数

x1 = np.array([72,79,85,90,150,-135,120,-10,60,100])
x2 = np.array([72,79,85,90,150,-135,120,-10,60,100])
x_angle = np.array([30,60,90,120,150,180])
x_sqr = np.array([9,16,25,225,400,625])
x_bit = np.array([2,4,8,16,32,64])
print(np.greater_equal(x1,x2))
print(np.mod(x1,x2))
print(np.exp(x1))
print(np.reciprocal(x1))
print(np.negative(x1))
print(np.isreal(x1))
print(np.isnan(np.log10(x1)))
print(np.sqrt(np.square(x_sqr)))
print(np.sin(x_angle*np.pi/180))
print(np.tan(x_angle*np.pi/180))
print(np.right_shift(x_bit,1))
print(np.left_shift(x_bit,1))

Numpy的数学模块

arr2d = np.array(((100,200,300),(111,222,333),(129,461,795)))
eig_val,eig_vec = LA.eig(arr2d)
print(LA.norm(arr2d))
print(LA.det(arr2d))
print(LA.inv(arr2d))
arr1 = np.array([[2,3],[3,4]])
arr2 = np.array([4,5])
results = np.linalg.solve(arr1,arr2)
print(results)
print(np.allclose(np.dot(arr1,results),arr2))

SciPy数学函数

积分

quad函数高斯积分

result = quad(lambda x:special.jv(4,x),0,20)
print(result)
print("Gaussian integral",np.sqrt(np.pi),quad(lambda x:np.exp(-x**2),-np.inf,np.inf))
def integrand(x,a,b,c):return a*x*x+b*x+c
a = 3
b = 4
c = 1
result = quad(integrand,0,np.inf,args=(a,b,c))
print(result)
二重积分(dblquad)和三重积分(tplquad)

def integrand(t,x,n):return np.exp(-x*t)/t**n
n = 4
result = dblquad(lambda t,x:integrand(t,x,n),0,np.inf,lambda x:0,lambda x:np.inf)
print(result)

固定间隔的高斯积分

def integrand(x,a,b):return a*x+b
a = 2
b = 1
fixed_result = fixed_quad(integrand,0,1,args=(a,b))
result = quadrature(integrand,0,1,args=(a,b))
print(result)

辛普森法则

def func1(a,x):return a*x**2+2
def func2(b,x):return b*x**3+4
x = np.array([1,2,4,5,6])
y1 = func1(2,x)
Intgrl1 = simps(y1,x)
print(Intgrl1)
y2 = func2(3,x)
Intgrl2 = simps(y2,x)
print(Intgrl2

odeint函数做常微分方程

def derivative(x,time):a = -2.0
    b = -0.1
    return array([x[1],a*x[0]+b*x[1]])
time = linspace(1.0,15.0,1000)
xinitialize = array([1.05,10.2])
x = odeint(derivative,xinitialize,time)
plt.figure()
plt.plot(time,x[:,0])
plt.xlabel('t')
plt.ylabel('x')
plt.show()
信号处理









这篇关于Mastering Python Scientific Computing的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146605

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar