Transformer从零详细解读

2024-09-08 00:12
文章标签 transformer 解读 详细

本文主要是介绍Transformer从零详细解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Transformer从零详细解读

一、从全局角度概况Transformer

​ 我们把TRM想象为一个黑盒,我们的任务是一个翻译任务,那么我们的输入是中文的“我爱你”,输入经过TRM得到的结果为英文的“I LOVE YOU”

image-20240907204119837

​ 接下来我们对TRM进行细化,我们将TRM分为两个部分,分别为Encoders(编码器)和Decoders(解码器)
image-20240907204310979

​ 在此基础上我们再进一步细化TRM的结构:
image-20240907204516292

​ 这里不一定是6个encoder和6个decoder,但是每个encoder之间的结构都是相同的,但是参数上并不相同,在训练的时候并不是只训练一个encoders,而是每个encoders都在训练。
​ 我们再看一下TRM原论文中的结构图:
image-20240907204735178

​ N是自己确定的数字,encoders和decoders之间的结构很不相同。

二、位置编码详细解读

​ 我们将encoder部分提取出来看,我们将encoder分为以下三个部分:
image-20240907205013310

​ 我们先看输入部分,输入部分分为:

  1. Embedding

    image-20240907205220310

    ​ embedding的操作方法就是:假如现在输入12个字,每个字用一个512维度的向量表示,那么这12个字展开后就是一个12*512的二维矩阵。矩阵的每个位置有两种初始化方式,一种是随机初始化,另一种是wordtovector方式。

  2. 位置编码

    ​ 我们从RNN结构来引入位置编码:
    image-20240907205626997

    ​ 对于RNN的所有的timesteps都共享同一套参数(U,W,V),例如右图上的“我”,“爱”,“你”在展开以后,使用的都是同一套参数(U,W,V)。

    面试题:RNN的梯度消失和普通网络的梯度消失有什么区别?
    RNN的梯度是一个总的梯度和,它的梯度消失并不是变为0,而是总的梯度被近距离梯度主导,被远距离梯度忽略不计。

1.位置编码公式:

image-20240907210344429

​ 2i代表偶数,在偶数位置使用sin,在2i+1奇数的位置使用cos,就比如我爱你中的爱这个字,进行展开,其中的偶数位置使用sin表达式,奇数位置使用cos表达式。得到展开式以后:
image-20240907210608231

​ 我们把字向量他们原本位置上的值与他们的位置编码相加,得到一个最终的512的维度的向量,作为TRM的输入。

2.为什么位置编码是有用的

​ 我们看下图中的推导,正余弦位置函数,这个体现出的是一种绝对位置信息。
image-20240907210902528

​ 以“我 爱 你”为例,pos+k 代表“你”,pos代表“我”,k代表“爱”,也就是说,“我爱你”中的“你”,可以被“我”和“爱” 线性组合起来,这样的线性组合就意味着绝对的位置向量中蕴含了相对位置信息。但是这种相对位置信息会在注意力机制那里消失。

三、多头注意力机制

1.基本的注意力机制

​ 我们看下图:
image-20240907211541271

​ 我们在看一张图的时候,一张图像总有一些部分是我们特别关注的地方。我们想通过一种方式得到“婴儿在干嘛”这句话 与图像中的哪部分区域更加关注/相似,这就是注意力机制的一种形式。

​ 计算公式:
image-20240907211815247

​ 我们举一个例子,就拿上面的例子为例,我们通过计算来判断下“婴儿在干嘛”这句话与图片中的哪部分区域更加相似,看下图:

image-20240907212008937 我单抽出婴儿这个单词,我们将区域分为四个部分,我们将“婴儿”作为q向量,四个区域分别对应K向量,和他们各自的V向量。我们判断“婴儿”与四个区域点乘的结果哪个是最大的,最大就代表了最相似。

​ 我们再举一个词与词的例子:
image-20240907212352609

​ 我们的计算步骤如下图:
image-20240907213938735

在只有单词向量的情况下,如何获取QKV

image-20240907214210685

​ 简单来说就是x1与WQ得到q1,,,行列分别相乘。

2.计算QK相似度,得到attention值

image-20240907214449575

​ 为什么要除以根号dk,q与k相乘值很大,softmax在反向传播的时候值很小,梯度会消失。在实际代码使用矩阵,方便并行。

image-20240907214659540

3.多头注意力机制

​ 多头,相当于把原始数据打到了多个不同的空间,保证TRM捕获到不同空间中的多种信息。

image-20240907215013033

​ 最后,我们将多套QKV计算得到的 结果通过一次矩阵计算进行合并,这样就可以得到我们多头注意力的输出。

image-20240907215151412

四、残差详解

1.什么是残差网络

​ 残差的原则就是输出至少不比输入差!多进行一个加法操作。image-20240907215526751

​ 我们可以再看一个很经典的图:
image-20240907215647125

2.残差网络的数学推导

image-20240907215840835

五、Batch Normal详解

​ BN的效果差,所以不用。再nlp中,很少使用BN,大多使用LN。

1.什么是BN,以及使用场景

image-20240907220213021

​ 我们看下面一张图:
image-20240907220301380

​ 每一行代表一个特征,每个人的“体重,身高”等指标,每个人的第一个特征都是“体重”。x1,x2分别代表不同的人。

2.BN的优点

  1. 可以解决内部协变量偏移
  2. 缓解了梯度饱和问题(如果使用sigmoid激活函数的话),加快收敛

3.BN的缺点

  1. batch_size较小的时候,效果差,局部的方差并不能代表全局
  2. BN再RNN中效果差,我们看下面的例子:前9个句子只有5个向量,但是第10个句子的长度达到20个向量的,这样导致第6到20维无法做BN,从而导致BN在RNN的处理中效果差
    image-20240907220713990

六、Layer Normal详解

1.如何理解LN

​ 理解:为什么LayerNorm单独对一个样本的所有单词做缩放可以起到效果。

​ 我们如果把BN引申到RNN,下面这张图则表示“我”和“今”是同一层的语义信息,,,“爱“和”天“是一层语义信息里面。

image-20240907221036404

​ 而在LN中,我们认为这两段话每段话都是分别的一个语义信息。

2.前馈神经网络

image-20240907221259306

七、Decoder详解

image-20240907221431239

1.多头注意力机制

image-20240907221510988

2.为什么需要mask

image-20240907221541150

​ 如果我们没有mask去训练的时候,我们在训练you的时候,所有的单词都对you做出了贡献。这样会导致训练和预测是不对等的。
image-20240907221638396

​ 正确的做法是:
image-20240907221734234

3.交互层

​ 我们再来看一下交互层,在交互层我们需要注意的是encoder的输出需要和每一个decoder做交互。
image-20240907221920599

image-20240907221957464

image-20240907222101400

image-20240907222158754

这篇关于Transformer从零详细解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146562

相关文章

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意