CPU亲和性设置 代码示例 sched_setaffinity sched_getaffinity

2024-09-07 23:04

本文主要是介绍CPU亲和性设置 代码示例 sched_setaffinity sched_getaffinity,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视频教程在这:

cpu亲和性设置,NCCL,sched_setaffinity sched_getaffinity,CPU_ZERO、SET、ISSET、linux_哔哩哔哩_bilibili

一、CPU亲和性简介

CPU亲和性(CPU Affinity)设置是操作系统中一个重要的性能优化手段,它允许程序或进程被绑定到特定的CPU核心上运行。这样做的好处包括减少缓存未命中、降低线程迁移(context switching)的开销,以及提高缓存的局部性(cache locality),从而可能提升程序的整体性能。

对于我们NCCL集合通信,也用到亲和性设置,通过将需要与GPU交互的CPU设置为距离近的CPU核心,来优化GPUCPU间的通信路径

NCCL通信时也用到亲和性设置,来优化GPU和CPU间的通信路径。

二、Linux系统中CPU亲和性的设置方法

在Linux系统中,CPU亲和性可通过sched_setaffinity系统调用进行设置,可以将当前进程或线程绑定到一组特定的CPU上。

2.1 sched_setaffinity()和sched_getaffinity

这里大家重点了解两个函数:sched_setaffinity()和sched_getaffinity

#include <sched.h>  int sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);
int sched_setaffinity(pid_t pid, size_t cpusetsize, const cpu_set_t *mask);

        sched_setaffinity():设置进程或线程的CPU亲和性
        sched_ getaffinity():获取进程或线程的CPU亲和性

参数说明

pid:要获取 CPU 亲和性的进程或线程的 ID。对于当前进程,可以使用 0。
cpusetsize:cpu_set_t 类型变量的大小,通常通过 sizeof(cpu_set_t) 获得。
mask:指向 cpu_set_t 类型的指针,用于存储返回的 CPU 亲和性掩码。在这个掩码中,每个位代表一个 CPU,如果某位被设置(即值为 1),则表示该进程或线程可以被调度到对应的 CPU 上运行。

2.2 CPU_ZEROCPU_SETCPU_ISSET、CPU_CLR

CPU_ZERO

CPU_ZERO宏用于初始化cpu_set_t类型的变量,将其所有位都设置为0。这表示在初始状态下,没有CPU核心被选中。

cpu_set_t cpuset;  
CPU_ZERO(&cpuset); // 初始化cpuset,所有位都设为0

CPU_SET

CPU_SET宏用于将cpu_set_t类型变量中指定的CPU核心对应的位设置为1。这表示该CPU核心被选中,进程或线程可以运行在该核心上。

CPU_SET(1, &cpuset); // 将cpuset中CPU 1对应的位设置为1

CPU_CLR

CPU_CLR宏用于将cpu_set_t类型变量中指定的CPU核心对应的位清除(即设置为0)。这表示该CPU核心不再被选中。

CPU_CLR(1, &cpuset); // 将cpuset中CPU 1对应的位清除

CPU_ISSET

CPU_ISSET宏用于检查cpu_set_t类型变量中指定的CPU核心对应的位是否被设置(即是否为1)。

if (CPU_ISSET(1, &cpuset)) {  // 如果cpuset中CPU 1对应的位被设置,则执行此代码块  
}

三、代码示例

获取当前进程的亲和性,并将亲和性设置为CPU0和CPU1。

#include <stdio.h>  // 引入标准输入输出头文件  
#include <stdlib.h> // 引入标准库头文件,用于exit函数  
#include <sched.h>  // 引入调度头文件,提供CPU亲和性相关的函数和宏  
#include <string.h> // 虽然在这个示例中未直接使用,但通常用于字符串操作  int main() {    cpu_set_t cpuset;  // 定义一个cpu_set_t类型的变量cpuset,用于表示CPU集合  size_t cpusetsize = sizeof(cpu_set_t);  // 获取cpu_set_t类型的大小,用作sched_setaffinity和sched_getaffinity的参数  // 验证并打印当前进程的CPU亲和性  cpu_set_t get_cpuset;  // 定义一个变量get_cpuset用于获取当前进程的CPU亲和性  CPU_ZERO(&get_cpuset);  // 初始化get_cpuset  // 尝试获取当前进程的CPU亲和性  if (sched_getaffinity(0, cpusetsize, &get_cpuset) == -1) {    perror("sched_getaffinity failed");  // 如果获取失败,则打印错误信息  exit(EXIT_FAILURE);  // 并以失败状态退出程序  }    // 打印当前进程的CPU亲和性  printf("Current CPU affinity: ");    for (size_t i = 0; i < CPU_SETSIZE; i++) {  // 遍历CPU_SETSIZE范围内的所有CPU编号  if (CPU_ISSET(i, &get_cpuset)) {  // 检查get_cpuset中对应CPU的位是否被设置  printf("CPU %zu ", i);  // 如果被设置,则打印该CPU编号  }    }    printf("\n");  // 换行  // 初始化CPU集合,将所有位清零  CPU_ZERO(&cpuset);    // 设置CPU亲和性,将CPU 0和CPU 1的位设置为1,表示希望将进程绑定到这两个CPU上  CPU_SET(0, &cpuset);    CPU_SET(1, &cpuset);    // 尝试设置当前进程的CPU亲和性  if (sched_setaffinity(0, cpusetsize, &cpuset) == -1) {    perror("sched_setaffinity failed");  // 如果设置失败,则打印错误信息  exit(EXIT_FAILURE);  // 并以失败状态退出程序  }    // 验证并打印当前进程的CPU亲和性  CPU_ZERO(&get_cpuset);  // 初始化get_cpuset  // 尝试获取当前进程的CPU亲和性  if (sched_getaffinity(0, cpusetsize, &get_cpuset) == -1) {    perror("sched_getaffinity failed");  // 如果获取失败,则打印错误信息  exit(EXIT_FAILURE);  // 并以失败状态退出程序  }    // 打印当前进程的CPU亲和性  printf("Current CPU affinity: ");    for (size_t i = 0; i < CPU_SETSIZE; i++) {  // 遍历CPU_SETSIZE范围内的所有CPU编号  if (CPU_ISSET(i, &get_cpuset)) {  // 检查get_cpuset中对应CPU的位是否被设置  printf("CPU %zu ", i);  // 如果被设置,则打印该CPU编号  }    }    printf("\n");  // 换行  // 假设我们想要清除CPU 1的亲和性设置(仅作为演示,不会实际影响进程)  CPU_CLR(1, &cpuset);  // 修改cpuset变量,清除CPU 1的位  // 注意:这里的CPU_CLR只是修改了cpuset变量,并不会影响已经设置的进程亲和性  // 如果要重新设置进程的CPU亲和性,需要再次调用sched_setaffinity  // (可选)重新打印修改后的cpuset,但请注意它不会反映进程的当前亲和性  printf("Modified cpuset (not applied to process): ");    for (size_t i = 0; i < CPU_SETSIZE; i++) {  // 再次遍历CPU_SETSIZE范围内的所有CPU编号  if (CPU_ISSET(i, &cpuset)) {  // 检查cpuset中对应CPU的位是否被设置  printf("CPU %zu ", i);  // 如果被设置,则打印该CPU编号  }    }    printf("\n");  // 换行  return 0;  // 程序正常结束  
}

程序输出结果:

我们在ubuntu用g++编译并运行,输出三行信息:

1、没有设置CPU亲和性前,当前进程可以在CPU0、CPU1、CPU2、CPU3上运行。

2、将当前进程的亲和性设置为CPU0和CPU1,第二行输出进程可以在CPU0、CPU1上运行。

3、是利用 CPU_CLR修改cpuset变量,清除CPU 1的位,并输出cpuset。(注意,只是改变了变量值,并没有对亲和性进行设置)

 

这篇关于CPU亲和性设置 代码示例 sched_setaffinity sched_getaffinity的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146416

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组