[Python]生成器和yield关键字

2024-09-07 22:36

本文主要是介绍[Python]生成器和yield关键字,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生成器和yield关键字

1.生成器介绍:

概述:
​ 它指的是 generator, 类似于以前学过的: 列表推导式, 集合推导式, 字典推导式…
作用:
​ 降低资源消耗, 快速(批量)生成数据.
实现方式:

​ 1.推导式写法.

my_generator = (i for i in range(5))

​ 2.yield写法.

def get_generator():for i in range(1, 6):yield i     # yield会记录每个生成的数据, 然后逐个的放到生成器对象中, 最终返回生成器对象.

问题: 如何从生成器对象中获取数据?
​ 答案:

​ 1.for循环遍历

​ 2.next()函数, 逐个获取.

# 案例1: 回顾之前的列表推导式, 集合推导式.
# 需求: 生成 1 ~ 5 的数据.
my_list = [i for i in range(1, 6)]
print(my_list, type(my_list))   # [1, 2, 3, 4, 5] <class 'list'>my_set = {i for i in range(1, 6)}
print(my_set, type(my_set))     # {1, 2, 3, 4, 5} <class 'set'># 案例2: 演示 生成器写法1, 推导式写法
# 尝试写一下, "元组"推导式, 发现打印的结果不是元组, 而是对象, 因为这种写法叫: 生成器.
my_tuple = (i for i in range(1, 6))print(my_tuple)             # <generator object <genexpr> at 0x0000024C90F056D0>    生成器对象
print(type(my_tuple))       # <class 'generator'>       生成器类型
print('-' * 31)# 案例3: 如何从生成器对象中获取数据呢?
# 1. 定义生成器, 获取 1 ~ 5的数字.
my_generator = (i for i in range(1, 6))# 2. 从生成器中获取数据.
# 格式1: for循环遍历
for i in my_generator:print(i)# 格式2: next()函数, 逐个获取.
print(next(my_generator))       # 1
print(next(my_generator))       # 2
2.yield关键字
# 案例: 演示 yield关键字方式, 获取生成器.# 需求: 自定义 get_generator()函数, 获取 包括: 1 ~ 5之间的整数 生成器.
# 1. 定义函数.
def get_generator():"""用于演示 yield关键字的用法:return: 生成器对象."""# 思路1: 自定义列表, 添加指定元素, 并返回.# my_list = []# for i in range(1, 6):#     my_list.append(i)# return my_list# 思路2: yield写法, 即: 如下的代码, 效果同上.for i in range(1, 6):yield i     # yield会记录每个生成的数据, 然后逐个的放到生成器对象中, 最终返回生成器对象.# 在main中测试.
if __name__ == '__main__':# 2. 调用函数, 获取生成器对象.my_generator = get_generator()# 3. 从生成器中获取每个元素.print(next(my_generator))   # 1print(next(my_generator))   # 2print('-' * 31)# 4. 遍历, 获取每个元素.for i in my_generator:print(i)
3.生成批次的数据
案例: 用生成器生成批次数据, 在模型训练中, 数据都是分批次来 "喂".需求: 读取项目下的  jaychou_lyrics.txt文件(其中有5000多条 歌词数据), 按照8/ 批次, 获取生成器, 并从中获取数据.
"""
import math# 需求1: 铺垫知识,  math.ceil(数字):  获取指定数字的天花板数(向上取整), 即: 比这个数字大的所有整数中, 最小的哪个整数.
# print(math.ceil(5.1))       # 6
# print(math.ceil(5.6))       # 6
# print(math.ceil(5.0))       # 5# 需求2: 获取生成器对象, 从文件中读数据数据, n条 / 批次
# 1. 定义函数 dataset_loader(batch_size), 表示: 数据生成器, 按照 batch_size条 分批.
def dataset_loader(batch_size):     # 假设: batch_size = 8"""该函数用于获取生成器对象, 每条数据都是一批次的数据.: 生成器(8, 8, 8...):param batch_size: 每批次有多少条数据:return: 返回生成器对象."""# 1.1 读取文件, 获取到每条(每行)数据.with open("./jaychou_lyrics.txt", 'r', encoding='utf-8') as f:# 一次读取所有行, 每行封装成字符串, 整体放到列表中.data_lines = f.readlines()      # 结果: [第一行, 第二行, 第三行...]# 1.2 根据上述的数据, 计算出: 数据的总条数(总行数), 假设: 100行(条)line_count = len(data_lines)# 1.3 基于上述的总条数 和 batch_size(每批次的条数), 获取: 批次总数(即: 总共多少批)batch_count = math.ceil(line_count / batch_size)        # 例如: math.ceil(100 / 8) = 13# 1.4 具体的获取每批次数据的动作, 用 yield包裹, 放到生成器中, 并最终返回生成器(对象)即可.for i in range(batch_count):        # batch_count的值: 13,  i的值: 0, 1, 2, 3, 4, 5, .... 12# 1.5 yield会记录每批次数据, 封装到生成器中, 并返回(生成器对象)"""推理过程:i = 0, 代表第1批次数据, 想要 第 1~~~~8 条数据,:  data_lines[0:8]      i = 1, 代表第2批次数据, 想要 第 9~~~~16 条数据,:  data_lines[8:16]      i = 2, 代表第3批次数据, 想要 第 17~~~~24 条数据,:  data_lines[16:24]......      """yield data_lines[i * batch_size: i * batch_size + batch_size]# 在main中, 测试调用
if __name__ == '__main__':# 2. 获取生成器对象.my_generator = dataset_loader(13)# 3. 从生成器中获取第 1 批数据.# print(next(my_generator))# # 从第一批次中, 获取具体的每一条数据.# for line in next(my_generator):#     print(line, end='')## print('-' * 31)## # 从第二批次中, 获取具体的每一条数据.# for line in next(my_generator):#     print(line, end='')# print('-' * 31)# 4. 查看具体的每一批数据.for batch_data in my_generator:print(batch_data)

文件:jaychou_lyrics.txt


这篇关于[Python]生成器和yield关键字的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146350

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚