【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

2024-09-07 22:20

本文主要是介绍【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 Wald 估计与简单控制回归的比较

CausalPy 和 多变量模型

感兴趣的系数

复杂化工具变量公式


 Wald 估计与简单控制回归的比较

但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。

naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df["education"])
)
az.summary(idata_reg, var_names=["beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

在这里,我们看到包含我们的工具变量和处理变量的回归中,分配给我们的工具变量 `nearcollege_indicator` 的系数权重 beta_z[nearcollege_indicator] 进一步向 0 缩小。这在一定程度上表明排除限制假设仍然是合理的。工具变量的影响被吸收到了处理变量更直接的影响中。

ols_estimate = az.extract(idata_reg["posterior"])["beta_z"].sel(covariates="education")
fig, axs = plt.subplots(2, 1, figsize=(7, 9))
axs = axs.flatten()
ax = axs[0]
ax1 = axs[1]
ax.hist(estimate,bins=30,ec="black",alpha=0.5,label=r"IV $\beta$ Education",rasterized=True,
)
ax1.hist(ols_estimate,bins=30,ec="black",alpha=0.5,label=r"Simple $\beta$ Education",color="red",rasterized=True,
)
ax.axvline(np.mean(estimate),linestyle="--",color="k",label=f"Expected IV Estimate: {np.round(np.mean(estimate.values), 2)}",
)
ax1.axvline(np.mean(ols_estimate),linestyle="--",color="k",label=f"Expected: {np.round(np.mean(ols_estimate.values), 2)}",
)
ax1.set_xlabel(r"$\beta$ coefficient Education")ax.legend()
ax1.legend(loc="upper left")
ax.set_title("Estimated IV Effect \n  Returns to Schooling",
)
ax1.set_title("Estimated Simple Effect \n  Returns to Schooling");

注意这里简单回归和工具变量估计之间的显著差异。这种对比在许多方面是工具变量设计的核心。通过为我们的问题提出一个工具变量模型,我们争论的是简单回归和工具变量估计之间的差异是由于混淆变量的影响,这种影响扭曲了我们对处理变量对结果的理解。工具变量设计旨在消除这种扭曲效应。了解这些估计之间的差异大小可以让我们感受到所谓的混淆变量所产生的影响。

CausalPy 和 多变量模型

现在我们使用 CausalPy 的贝叶斯工具变量回归来拟合模型。在这里,我们可以明确地陈述构成我们模型的结构方程。重要的是,我们确保包含在工具变量公式中的控制变量也被包含在结果公式中。

sample_kwargs = {"chains": 4,"cores": 4,"target_accept": 0.95,"progressbar": True,"nuts_sampler": "numpyro",  ## requires Jax and Numpyro install"idata_kwargs": {"log_likelihood": True},
}
instruments_formula = "education ~ 1 + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator"
formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"
instruments_data = df[["education","nearcollege_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.summary(iv.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

感兴趣的系数

如我们所见,beta_z[education] 系数记录了我们的 LATE 估计,并且实质上恢复了与上面的两步 Wald 估计相同的价值。同时请注意,experience_1 变量似乎与其他变量处于不同的数量级。

默认情况下,InstrumentalVariable 类不会从先验预测分布或后验预测分布中采样,就像典型的 CausalPy 模型那样。这主要是因为在工具变量回归中,重点在于 beta_z 和 beta_t 参数,以及在 beta_z[education] 上记录的处理效应的焦点参数。

然而,在模型估计之后完全有可能从后验预测分布中采样。如果您确实希望从后验预测分布中采样,我们强烈建议安装并使用 Jax 采样器进行后验预测采样,因为它通常比基础的 pymc 采样器快得多。

iv.model.sample_predictive_distribution(ppc_sampler="jax")

同样地,我们也可以提取先验预测检查,并观察后验分布如何更新了我们的先验。 

with iv.model:iv.idata.extend(pm.sample_prior_predictive(var_names=["beta_z"]))
az.plot_dist_comparison(iv.idata, var_names=["beta_z"], coords={"covariates": ["education"]}, figsize=(8, 4)
);

上面的图展示了我们对处理效应可能实现的广泛假设,以及在考虑到观测数据的情况下,可能实现的狭窄范围。

复杂化工具变量公式

我们可以通过添加额外的工具变量来进一步评估加强工具变量效应的想法。一个自然的想法是观察当我们添加额外的 `nearcollege2_indicator` 时,教育方程中的工具变量值如何变化。从我们对数据的视觉检查来看,似乎有必要尝试确定接近两年制和四年制大学如何影响教育程度。

instruments_formula = """education ~  experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator + nearcollege2_indicator"""formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"instruments_data = df[["education","nearcollege_indicator","nearcollege2_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv1 = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)
iv1.model.sample_predictive_distribution(ppc_sampler="jax")az.summary(iv1.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

 

在这里,我们看到额外工具变量 `beta_t[nearcollege2_indicator]` 和原有工具变量 `beta_t[nearcollege_indicator]` 的加入使得 LATE 估计值从 0.13 提升到了 0.16。这在直觉上是合理的,并且或许增强了整体观点,即接近度是一个好的工具变量。

这篇关于【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146323

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar