【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

2024-09-07 22:20

本文主要是介绍【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 Wald 估计与简单控制回归的比较

CausalPy 和 多变量模型

感兴趣的系数

复杂化工具变量公式


 Wald 估计与简单控制回归的比较

但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。

naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df["education"])
)
az.summary(idata_reg, var_names=["beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

在这里,我们看到包含我们的工具变量和处理变量的回归中,分配给我们的工具变量 `nearcollege_indicator` 的系数权重 beta_z[nearcollege_indicator] 进一步向 0 缩小。这在一定程度上表明排除限制假设仍然是合理的。工具变量的影响被吸收到了处理变量更直接的影响中。

ols_estimate = az.extract(idata_reg["posterior"])["beta_z"].sel(covariates="education")
fig, axs = plt.subplots(2, 1, figsize=(7, 9))
axs = axs.flatten()
ax = axs[0]
ax1 = axs[1]
ax.hist(estimate,bins=30,ec="black",alpha=0.5,label=r"IV $\beta$ Education",rasterized=True,
)
ax1.hist(ols_estimate,bins=30,ec="black",alpha=0.5,label=r"Simple $\beta$ Education",color="red",rasterized=True,
)
ax.axvline(np.mean(estimate),linestyle="--",color="k",label=f"Expected IV Estimate: {np.round(np.mean(estimate.values), 2)}",
)
ax1.axvline(np.mean(ols_estimate),linestyle="--",color="k",label=f"Expected: {np.round(np.mean(ols_estimate.values), 2)}",
)
ax1.set_xlabel(r"$\beta$ coefficient Education")ax.legend()
ax1.legend(loc="upper left")
ax.set_title("Estimated IV Effect \n  Returns to Schooling",
)
ax1.set_title("Estimated Simple Effect \n  Returns to Schooling");

注意这里简单回归和工具变量估计之间的显著差异。这种对比在许多方面是工具变量设计的核心。通过为我们的问题提出一个工具变量模型,我们争论的是简单回归和工具变量估计之间的差异是由于混淆变量的影响,这种影响扭曲了我们对处理变量对结果的理解。工具变量设计旨在消除这种扭曲效应。了解这些估计之间的差异大小可以让我们感受到所谓的混淆变量所产生的影响。

CausalPy 和 多变量模型

现在我们使用 CausalPy 的贝叶斯工具变量回归来拟合模型。在这里,我们可以明确地陈述构成我们模型的结构方程。重要的是,我们确保包含在工具变量公式中的控制变量也被包含在结果公式中。

sample_kwargs = {"chains": 4,"cores": 4,"target_accept": 0.95,"progressbar": True,"nuts_sampler": "numpyro",  ## requires Jax and Numpyro install"idata_kwargs": {"log_likelihood": True},
}
instruments_formula = "education ~ 1 + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator"
formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"
instruments_data = df[["education","nearcollege_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)az.summary(iv.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

感兴趣的系数

如我们所见,beta_z[education] 系数记录了我们的 LATE 估计,并且实质上恢复了与上面的两步 Wald 估计相同的价值。同时请注意,experience_1 变量似乎与其他变量处于不同的数量级。

默认情况下,InstrumentalVariable 类不会从先验预测分布或后验预测分布中采样,就像典型的 CausalPy 模型那样。这主要是因为在工具变量回归中,重点在于 beta_z 和 beta_t 参数,以及在 beta_z[education] 上记录的处理效应的焦点参数。

然而,在模型估计之后完全有可能从后验预测分布中采样。如果您确实希望从后验预测分布中采样,我们强烈建议安装并使用 Jax 采样器进行后验预测采样,因为它通常比基础的 pymc 采样器快得多。

iv.model.sample_predictive_distribution(ppc_sampler="jax")

同样地,我们也可以提取先验预测检查,并观察后验分布如何更新了我们的先验。 

with iv.model:iv.idata.extend(pm.sample_prior_predictive(var_names=["beta_z"]))
az.plot_dist_comparison(iv.idata, var_names=["beta_z"], coords={"covariates": ["education"]}, figsize=(8, 4)
);

上面的图展示了我们对处理效应可能实现的广泛假设,以及在考虑到观测数据的情况下,可能实现的狭窄范围。

复杂化工具变量公式

我们可以通过添加额外的工具变量来进一步评估加强工具变量效应的想法。一个自然的想法是观察当我们添加额外的 `nearcollege2_indicator` 时,教育方程中的工具变量值如何变化。从我们对数据的视觉检查来看,似乎有必要尝试确定接近两年制和四年制大学如何影响教育程度。

instruments_formula = """education ~  experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator + nearcollege_indicator + nearcollege2_indicator"""formula = "log_wage ~ 1 + education  + experience_1 + experience_2 + ethnicity_indicator + south_indicator + smsa_indicator"instruments_data = df[["education","nearcollege_indicator","nearcollege2_indicator","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]data = df[["log_wage","education","experience_1","experience_2","ethnicity_indicator","smsa_indicator","south_indicator",]
]
iv1 = InstrumentalVariable(instruments_data=instruments_data,data=data,instruments_formula=instruments_formula,formula=formula,model=InstrumentalVariableRegression(sample_kwargs=sample_kwargs),
)
iv1.model.sample_predictive_distribution(ppc_sampler="jax")az.summary(iv1.idata, var_names=["beta_t", "beta_z"])[["mean", "sd", "hdi_3%", "hdi_97%", "r_hat"]
]

 

在这里,我们看到额外工具变量 `beta_t[nearcollege2_indicator]` 和原有工具变量 `beta_t[nearcollege_indicator]` 的加入使得 LATE 估计值从 0.13 提升到了 0.16。这在直觉上是合理的,并且或许增强了整体观点,即接近度是一个好的工具变量。

这篇关于【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146323

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4