PC/MCU/SoC使用的计算机架构(Architecture)

2024-09-07 21:44

本文主要是介绍PC/MCU/SoC使用的计算机架构(Architecture),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 冯·诺依曼结构

冯·诺依曼结构(Von Neumann Architecture)是计算机系统的经典架构,由数学家约翰·冯·诺依曼在1945年提出。它的核心思想是程序存储器数据存储器共享同一存储设备,程序和数据以相同的方式存储和访问。冯·诺依曼架构的主要特点包括:

  • 单一存储器:存储程序指令和数据在同一个存储器中。
  • 控制单元:通过程序计数器顺序执行指令。
  • 数据路径:通过一个共享的总线,将数据和指令从存储器传输到处理器。
  • 顺序执行:程序指令按顺序执行(除非有跳转指令)。

这种架构由于其简单、可行,成为了计算机设计的基石,并被广泛应用于早期计算机。

冯·诺依曼瓶颈

冯·诺依曼结构存在一个著名的问题,称为“冯·诺依曼瓶颈”。这是由于数据和指令通过相同的总线进行传输,导致在高并发情况下,数据和指令的访问速度无法满足处理器的需求,形成性能瓶颈。

2. 哈佛结构

哈佛结构(Harvard Architecture)是另一种计算机架构,最初用于早期的信号处理设备。与冯·诺依曼架构不同,哈佛架构将程序指令和数据分别存储在不同的存储器中,并使用独立的总线进行访问。这使得程序和数据的读取可以并行进行,从而提高系统性能。

哈佛结构的主要特点:

  • 独立的存储空间:指令存储器和数据存储器彼此独立,彼此不共享。
  • 并行数据与指令访问:可以同时从指令存储器读取指令,并从数据存储器读取/写入数据。
  • 提高性能:减少了冯·诺依曼瓶颈带来的等待时间问题。
应用场景

哈佛架构主要应用于需要高效率和并行处理的场合,特别是嵌入式系统和**数字信号处理器(DSP)**等。

3. 其他架构

除了冯·诺依曼和哈佛结构,还有其他计算机架构被提出和研究,但并没有广泛应用于大多数通用计算设备中:

  • 修正哈佛结构(Modified Harvard Architecture):允许指令存储器和数据存储器独立,但可以共享数据。这种架构结合了冯·诺依曼和哈佛架构的优点,在现代处理器(如ARM和x86)中较为常见。
  • 流处理器(Stream Processing Architecture):用于并行处理大规模数据流,常见于图形处理单元(GPU)。
  • 图灵机(Turing Machine):理论计算模型,为计算理论提供了基础,但并不直接用于硬件设计。

4. 现代计算机架构

绝大多数现代计算机,包括桌面计算机、服务器、嵌入式系统、手机等,采用的是修正哈佛结构或一种混合架构。这种结构结合了哈佛架构的并行处理能力和冯·诺依曼架构的简易性,使得现代处理器既能高效并行处理数据,又能灵活编写程序。

5. 嵌入式 MCU 和 SoC 使用的架构

嵌入式MCU(Microcontroller Unit)SoC(System on Chip) 通常采用的是哈佛架构修正哈佛架构,尤其是常见的 8-bit、16-bit 和 32-bit 微控制器(如 ARM Cortex-M 系列)。原因如下:

  • 高效的数据和指令访问:嵌入式系统往往要求实时处理输入数据,因此并行访问指令和数据显著提高了系统响应速度。
  • 小型化和低功耗:嵌入式设备通常体积小、功耗低,需要简化的架构,而哈佛架构允许硬件逻辑简单化和并行化。
  • 定制优化:SoC 可以根据具体应用需求,使用多种架构混合方案以满足性能、功耗和面积的平衡需求。

6. 为什么选择哈佛架构?优势是什么?

选择哈佛架构的原因主要基于其性能和功耗优势,尤其在嵌入式系统中,这些因素非常关键。

  • 并行执行:指令和数据可以同时访问和处理,减少了处理器等待时间。
  • 简单高效:由于指令和数据路径是分开的,系统设计更加简单,能够优化执行效率和降低复杂度。
  • 适合实时系统:哈佛架构允许在短时间内高效处理数据输入,非常适合对时间敏感的任务,例如传感器数据采集和处理。

7. 总结

  • 冯·诺依曼结构:通用、经典架构,但存在“冯·诺依曼瓶颈”。
  • 哈佛结构:数据和指令独立存储和访问,性能更高,尤其在嵌入式系统和信号处理场景中有广泛应用。
  • 修正哈佛结构:结合了冯·诺依曼和哈佛架构的优点,广泛应用于现代通用计算机和处理器中。
  • 嵌入式MCU和SoC:大多数嵌入式系统采用哈佛或修正哈佛架构,因其在并行处理、效率和实时性上的优势。

这种架构之所以被广泛应用,是因为它能在嵌入式系统中实现高效、低功耗、实时响应等特性,正好满足了现代电子设备的需求。

这篇关于PC/MCU/SoC使用的计算机架构(Architecture)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146239

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言