PC/MCU/SoC使用的计算机架构(Architecture)

2024-09-07 21:44

本文主要是介绍PC/MCU/SoC使用的计算机架构(Architecture),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 冯·诺依曼结构

冯·诺依曼结构(Von Neumann Architecture)是计算机系统的经典架构,由数学家约翰·冯·诺依曼在1945年提出。它的核心思想是程序存储器数据存储器共享同一存储设备,程序和数据以相同的方式存储和访问。冯·诺依曼架构的主要特点包括:

  • 单一存储器:存储程序指令和数据在同一个存储器中。
  • 控制单元:通过程序计数器顺序执行指令。
  • 数据路径:通过一个共享的总线,将数据和指令从存储器传输到处理器。
  • 顺序执行:程序指令按顺序执行(除非有跳转指令)。

这种架构由于其简单、可行,成为了计算机设计的基石,并被广泛应用于早期计算机。

冯·诺依曼瓶颈

冯·诺依曼结构存在一个著名的问题,称为“冯·诺依曼瓶颈”。这是由于数据和指令通过相同的总线进行传输,导致在高并发情况下,数据和指令的访问速度无法满足处理器的需求,形成性能瓶颈。

2. 哈佛结构

哈佛结构(Harvard Architecture)是另一种计算机架构,最初用于早期的信号处理设备。与冯·诺依曼架构不同,哈佛架构将程序指令和数据分别存储在不同的存储器中,并使用独立的总线进行访问。这使得程序和数据的读取可以并行进行,从而提高系统性能。

哈佛结构的主要特点:

  • 独立的存储空间:指令存储器和数据存储器彼此独立,彼此不共享。
  • 并行数据与指令访问:可以同时从指令存储器读取指令,并从数据存储器读取/写入数据。
  • 提高性能:减少了冯·诺依曼瓶颈带来的等待时间问题。
应用场景

哈佛架构主要应用于需要高效率和并行处理的场合,特别是嵌入式系统和**数字信号处理器(DSP)**等。

3. 其他架构

除了冯·诺依曼和哈佛结构,还有其他计算机架构被提出和研究,但并没有广泛应用于大多数通用计算设备中:

  • 修正哈佛结构(Modified Harvard Architecture):允许指令存储器和数据存储器独立,但可以共享数据。这种架构结合了冯·诺依曼和哈佛架构的优点,在现代处理器(如ARM和x86)中较为常见。
  • 流处理器(Stream Processing Architecture):用于并行处理大规模数据流,常见于图形处理单元(GPU)。
  • 图灵机(Turing Machine):理论计算模型,为计算理论提供了基础,但并不直接用于硬件设计。

4. 现代计算机架构

绝大多数现代计算机,包括桌面计算机、服务器、嵌入式系统、手机等,采用的是修正哈佛结构或一种混合架构。这种结构结合了哈佛架构的并行处理能力和冯·诺依曼架构的简易性,使得现代处理器既能高效并行处理数据,又能灵活编写程序。

5. 嵌入式 MCU 和 SoC 使用的架构

嵌入式MCU(Microcontroller Unit)SoC(System on Chip) 通常采用的是哈佛架构修正哈佛架构,尤其是常见的 8-bit、16-bit 和 32-bit 微控制器(如 ARM Cortex-M 系列)。原因如下:

  • 高效的数据和指令访问:嵌入式系统往往要求实时处理输入数据,因此并行访问指令和数据显著提高了系统响应速度。
  • 小型化和低功耗:嵌入式设备通常体积小、功耗低,需要简化的架构,而哈佛架构允许硬件逻辑简单化和并行化。
  • 定制优化:SoC 可以根据具体应用需求,使用多种架构混合方案以满足性能、功耗和面积的平衡需求。

6. 为什么选择哈佛架构?优势是什么?

选择哈佛架构的原因主要基于其性能和功耗优势,尤其在嵌入式系统中,这些因素非常关键。

  • 并行执行:指令和数据可以同时访问和处理,减少了处理器等待时间。
  • 简单高效:由于指令和数据路径是分开的,系统设计更加简单,能够优化执行效率和降低复杂度。
  • 适合实时系统:哈佛架构允许在短时间内高效处理数据输入,非常适合对时间敏感的任务,例如传感器数据采集和处理。

7. 总结

  • 冯·诺依曼结构:通用、经典架构,但存在“冯·诺依曼瓶颈”。
  • 哈佛结构:数据和指令独立存储和访问,性能更高,尤其在嵌入式系统和信号处理场景中有广泛应用。
  • 修正哈佛结构:结合了冯·诺依曼和哈佛架构的优点,广泛应用于现代通用计算机和处理器中。
  • 嵌入式MCU和SoC:大多数嵌入式系统采用哈佛或修正哈佛架构,因其在并行处理、效率和实时性上的优势。

这种架构之所以被广泛应用,是因为它能在嵌入式系统中实现高效、低功耗、实时响应等特性,正好满足了现代电子设备的需求。

这篇关于PC/MCU/SoC使用的计算机架构(Architecture)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146239

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他