PC/MCU/SoC使用的计算机架构(Architecture)

2024-09-07 21:44

本文主要是介绍PC/MCU/SoC使用的计算机架构(Architecture),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 冯·诺依曼结构

冯·诺依曼结构(Von Neumann Architecture)是计算机系统的经典架构,由数学家约翰·冯·诺依曼在1945年提出。它的核心思想是程序存储器数据存储器共享同一存储设备,程序和数据以相同的方式存储和访问。冯·诺依曼架构的主要特点包括:

  • 单一存储器:存储程序指令和数据在同一个存储器中。
  • 控制单元:通过程序计数器顺序执行指令。
  • 数据路径:通过一个共享的总线,将数据和指令从存储器传输到处理器。
  • 顺序执行:程序指令按顺序执行(除非有跳转指令)。

这种架构由于其简单、可行,成为了计算机设计的基石,并被广泛应用于早期计算机。

冯·诺依曼瓶颈

冯·诺依曼结构存在一个著名的问题,称为“冯·诺依曼瓶颈”。这是由于数据和指令通过相同的总线进行传输,导致在高并发情况下,数据和指令的访问速度无法满足处理器的需求,形成性能瓶颈。

2. 哈佛结构

哈佛结构(Harvard Architecture)是另一种计算机架构,最初用于早期的信号处理设备。与冯·诺依曼架构不同,哈佛架构将程序指令和数据分别存储在不同的存储器中,并使用独立的总线进行访问。这使得程序和数据的读取可以并行进行,从而提高系统性能。

哈佛结构的主要特点:

  • 独立的存储空间:指令存储器和数据存储器彼此独立,彼此不共享。
  • 并行数据与指令访问:可以同时从指令存储器读取指令,并从数据存储器读取/写入数据。
  • 提高性能:减少了冯·诺依曼瓶颈带来的等待时间问题。
应用场景

哈佛架构主要应用于需要高效率和并行处理的场合,特别是嵌入式系统和**数字信号处理器(DSP)**等。

3. 其他架构

除了冯·诺依曼和哈佛结构,还有其他计算机架构被提出和研究,但并没有广泛应用于大多数通用计算设备中:

  • 修正哈佛结构(Modified Harvard Architecture):允许指令存储器和数据存储器独立,但可以共享数据。这种架构结合了冯·诺依曼和哈佛架构的优点,在现代处理器(如ARM和x86)中较为常见。
  • 流处理器(Stream Processing Architecture):用于并行处理大规模数据流,常见于图形处理单元(GPU)。
  • 图灵机(Turing Machine):理论计算模型,为计算理论提供了基础,但并不直接用于硬件设计。

4. 现代计算机架构

绝大多数现代计算机,包括桌面计算机、服务器、嵌入式系统、手机等,采用的是修正哈佛结构或一种混合架构。这种结构结合了哈佛架构的并行处理能力和冯·诺依曼架构的简易性,使得现代处理器既能高效并行处理数据,又能灵活编写程序。

5. 嵌入式 MCU 和 SoC 使用的架构

嵌入式MCU(Microcontroller Unit)SoC(System on Chip) 通常采用的是哈佛架构修正哈佛架构,尤其是常见的 8-bit、16-bit 和 32-bit 微控制器(如 ARM Cortex-M 系列)。原因如下:

  • 高效的数据和指令访问:嵌入式系统往往要求实时处理输入数据,因此并行访问指令和数据显著提高了系统响应速度。
  • 小型化和低功耗:嵌入式设备通常体积小、功耗低,需要简化的架构,而哈佛架构允许硬件逻辑简单化和并行化。
  • 定制优化:SoC 可以根据具体应用需求,使用多种架构混合方案以满足性能、功耗和面积的平衡需求。

6. 为什么选择哈佛架构?优势是什么?

选择哈佛架构的原因主要基于其性能和功耗优势,尤其在嵌入式系统中,这些因素非常关键。

  • 并行执行:指令和数据可以同时访问和处理,减少了处理器等待时间。
  • 简单高效:由于指令和数据路径是分开的,系统设计更加简单,能够优化执行效率和降低复杂度。
  • 适合实时系统:哈佛架构允许在短时间内高效处理数据输入,非常适合对时间敏感的任务,例如传感器数据采集和处理。

7. 总结

  • 冯·诺依曼结构:通用、经典架构,但存在“冯·诺依曼瓶颈”。
  • 哈佛结构:数据和指令独立存储和访问,性能更高,尤其在嵌入式系统和信号处理场景中有广泛应用。
  • 修正哈佛结构:结合了冯·诺依曼和哈佛架构的优点,广泛应用于现代通用计算机和处理器中。
  • 嵌入式MCU和SoC:大多数嵌入式系统采用哈佛或修正哈佛架构,因其在并行处理、效率和实时性上的优势。

这种架构之所以被广泛应用,是因为它能在嵌入式系统中实现高效、低功耗、实时响应等特性,正好满足了现代电子设备的需求。

这篇关于PC/MCU/SoC使用的计算机架构(Architecture)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146239

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND